Schultes/Sanders: Route Planning D 1

Route Planningin Road Networks

— simple, flexible, efficient —

Dominik Schultes Peter Sanders

Institut fur Theoretische Informatik — Algorithmik Il

Universitat Karlsruhe (TH)

http://al go2.iti.uka. de/schultes/ hwy/

Bertinoro, October 1, 2007

Schultes/Sanders: Route Planning D 2

\Static Route Planning in Road Networkﬂ

Task: determine quickest route from source to target location

Problem: for large networks, simple algorithms are too slow

Assumption: road network does not change

Conclusion: use preprocessed data to accelerate source-target-queries
(research focus during the last years [— e.g., 9th DIMACS Challenge])

~~ correctness relies on the above assumption

Route Planning

Schultes/Sanders

IC Scenario

Dynam

c
@)
=
(@)
c
-
S
.
n
®)
o
)
| -
=
c
(b
)
(@)]
-
Q)
L
o

use different speed profile)

o

(e

n
)
L
=)

(D)

=

)

(@)
©

(D)

=

()
Y

@

()

(@))

-

©
-

&)

due to a traffic jam)

(@)]

(e

Schultes/Sanders: Route Planning D 4

‘ Constancy of Structure'

Weaker Assumption:

L] structure of road network does not change
(no new roads, road removal = set weight to o0)

~~ not a significant restriction

[] classification of nodes by ‘importance’ might be slightly perturbed,
but not completely changed

(e.g., a sports car and a truck both prefer motorways)

~~ performance of our approach relies on that

(not the correctness)

Schultes/Sanders: Route Planning

‘Highway-Node Routing'

1. basic conceptsbverlay graphs, covering nodes

2. lightweight, efficient static approach

3. dynamic version

4. many-to-many extension T

Schultes/Sanders: Route Planning o 6

1. Basic Concepts

Schultes/Sanders: Route Planning o 7
‘Overlay Graph: Definition I

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000—-2007]

[1 graph G = (V, E) is given

[] select node subset SCV

Schultes/Sanders: Route Planning o 8
‘Overlay Graph: Definition I

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000—-2007]
[1 graph G = (V, E) is given

[] select node subset SCV

] overlay graph G’ := (S E')

determine edge set E’ s.t. shortest path distances are preserved

Schultes/Sanders: Route Planning o 9
‘I\/Iinimal Overlay Graph I

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000—-2007]

[1 graph G = (V, E) is given

[] select node subset SCV

[minimal overlay graph G" := (S E) where

E’:= {(s,t) € Sx S| no inner node of the shortest St-path belongs to S}

Schultes/Sanders: Route Planning o 10
Covering Nodeﬂ

[] covered branch: contains a nhode from S

Definitions:

[] covered tree: all branches covered

[] covering nodes: on each branch, the node U € Sclosest to the root S

Schultes/Sanders: Route Planning o 11
‘Query: Intuition I

[] perform search in Gtill search trees are covered by nodes in S

[] bidirectional

Schultes/Sanders: Route Planning o 12
‘Query: Intuition I

[] perform search in Gtill search trees are covered by nodes in S

[] bidirectional

] continue search only in G’

Schultes/Sanders: Route Planning D 13

\Overlay Graph: Construction I

foreachnode U € S

[] perform a local search from Uin G
[] determine the covering nodes

[add an edge (U, V) to E’ for each covering node v

Schultes/Sanders: Route Planning

Covering Nodeﬂ

Conservative Approach:

[] stop searching in G when all branches are covered

[] can be very inefficient

Schultes/Sanders: Route Planning D 15

Covering Nodeﬂ

Aggressive Approach:

[] do not continue the search in G on covered branches

fast road

slow road

[] can be very inefficient

Schultes/Sanders: Route Planning

Covering Nodeﬂ

Compromise:
] introduce parameter P

[] do not continue the search in G on branches that

already contain P nodes from S
L] in addition: stop when all branches are covered
[] p=1— aggressive

[] p = o — conservative

[] works very well in practice

17
—06]

SS05

[

[] determines a hierarchical representation of nodes and edges

(7))
Q
S

i
— O
QS
QLR s
T ©
y (@))
@ m
=] s
L o
O d
L

Schultes/Sanders: Route Planning
[] previous static route

Schultes/Sanders: Route Planning D 18

2. Static Highway-Node
Routing

Schultes/Sanders: Route Planning D 19

\Static Highway-Node Routing'

[] extend ideas from

— multi-level overlay graphs [HolzerSchulzWagnerWeiheZaroliagis00—07]
— highway hierarchies [SS05-06]
— transit node routing [BastFunkeMatijevicSS06-07]

[] use highway hierarchies to classify nodes by ‘importance’
i.e., selectnodesets 5 O S$H D0 ... 0§

(crucial distinction from previous separator-based approach)

[] construct multi-level overlay graph
GO =G = (Va E)aGl — (Sla El)aGZ — (827 E2)7 X '7GL — (S_a EL)

(just iteratively construct overlay graphs)

Schultes/Sanders: Route Planning D 20

\Static Highway-Node Routing'

[] extend ideas from

— multi-level overlay graphs [HolzerSchulzWagnerWeiheZaroliagis00—07]
— highway hierarchies [SS05-06]
— transit node routing [BastFunkeMatijevicSS06—07]

[] use highway hierarchies to classify nodes by ‘importance’
i.e., selectnodesets S5 0SH O S... 0§ 13 min

(crucial distinction from previous separator-based approach)

[] construct multi-level overlay graph 2 min
GO =G = (Va E)aGl — (Sla El)aGZ — (827 E2)7 X '7GL — (S_a EL)

(just iteratively construct overlay graphs)

(experiments with a European road network with =~ 18 million nodes)

Schultes/Sanders: Route Planning D 21

Query: Aggressive Variant'

[1 node level £(U) :=max{/|ue S}
L] forward search graph E = (V7 {(Uav) | (U,V) € U%:g(u) Ei})
[] backward search graph E = (V, {(UaV) ‘ (V, u) = Ug_zﬁ(U) Ei })

— —
[] perform one plain Dijkstra search in G and one in G

Level 2

Schultes/Sanders: Route Planning D 22

\ Proof of Correctnesa

Level 2

Level 1

OAVA- AATA- AA ACAC AN LS

doSt

shortest path from Stot in G = G

Schultes/Sanders: Route Planning o 23
'Proof of Correctnesg

Level 2
@‘ @‘ @ Level 1

overlay graph (G1 preserves distance fromS; € Sjtot]1 € §

Schultes/Sanders: Route Planning o 24
'Proof of Correctnesg

@—@ Level 2

d2(S2,t2)
(S) ‘@‘ (tp) Level 1
1(S2, t2)

E-O-E-O-O@- OB O-O-0HD tLevelo

overlay graph G2 preserves distance from S € S totr) € S

Schultes/Sanders: Route Planning D 25

\ Proof of Correctness

Schultes/Sanders: Route Planning D 26

\ Stall-on-DemandI

[1 anode V can ‘wake’ a node Uif £(U) > £(V)

[] Ucan ‘stall’ v (if d(u) +w(u,v) < O(V))
l.e., search is not continued from V

fast road

slow road

[] stalling can propagate to adjacent nodes

[] does not invalidate correctness (only suboptimal paths are stalled)

Karlsruhe —
Bertinoro

NO Stall-on-Demand

search space size:

Bertinoro
Stall

-Demand

on

search space size:

Schultes/Sanders: Route Planning D 29

‘ Memory Consumption / Query TimeI

different trade-offs between memory consumption and query time

for example:

[] 9 bytes per node overhead — 0.88 ms

store complete multi-level overlay graph

[] 0.7 bytes per node overhead — 1.44ms
— —
store only forward and backward search graph G and G

— —
(G and G are independent of Sand t)

numbers refer to the Western European road network with 18 million nodes

Schultes/Sanders: Route Planning o 30

3. Dynamic Highway-Node
Routing

¥
o | i
L |

.‘J i :

Schultes/Sanders: Route Planning

‘Dynamic Highway-Node Routing' D

change entirecost function

[] keepthenodesets S O S O S3...

L] recompute the overlay graphs

31

speed profile default fastcar slowcar slowtruck distance
constr. [min] 1:40 1:41 1:39 1:36 3:56
query [ms] 1.17 1.20 1.28 1.50 35.62
#settled nodes 1414 1444 1507 1667 7057

Schultes/Sanders: Route Planning o 32
‘Dynamic Highway-Node Routing'

change afew edge weights

[] server scenario:if something changes,

— update the preprocessed data structures

— answer many subsequent queries very fast

[1 mobile scenario:if something changes,
— It does not pay to update the data structures

— perform single ‘prudent’ query that

takes changed situation into account

Schultes/Sanders: Route Planning

‘Dynamic Highway-Node Routing'

change afew edge weightsserver scenario

[] keepthenodesets S 0 SH DO S3...

[] recompute only possibly affected parts of the overlay graphs

— the computation of the level-£ overlay graph consists of

'S/| local searches to determine the respective covering nodes

— if the initial local search from V € & has not touched a now

modified edge (U, X), that local search need not be repeated

— We manage sets Aﬁ — {V €S | Vs level-£ preprocessing
might be affected when an edge (U, X) changes}

Schultes/Sanders: Route Planning

‘Dynamic Highway-Node Routing'

change afew edge weightsserver scenario

o
S 6686 a -
- sg= 20 il
2 3 HIH , — S
Q B : : ! | __
£ ml=in i In
— B
& 3 M | O add traffic jam AT - o S
] — B cancel trafficjam | ! T
) O block road
—_ | T E R
© 3 Lo F ©
| | | | |
any motorway national regional urban

Road Type

Schultes/Sanders: Route Planning

‘Dynamic Highway-Node Routing'

change afew edge weightsmobile scenario

1. keepthenodesets S5 0 S 0 S3...

2. keep the overlay graphs
3. C .= all changed edges

4. use the sets Aﬁ (considering edges in C) to determine for each
node V a reliable level I (V)

5. during a query, at node V
[J do not use edges that have been created in some level > I (V)

[instead, downgrade the search to level I (V)

>
S
c
c
Wy
Q
S
S
)
Q@

Schultes/Sanders

Schultes/Sanders: Route Planning

‘Dynamic Highway-Node Routing'

change afew edge weightsmobile scenario

iterative variant (provided that only edge weight increases allowed)
1. keep everything (as before)
2.C.=0

3. use the sets Aﬂ (considering edges in C) to determine for each

node V a reliable level I (V) (as before)
4. ‘prudent’ query (as before)
5. if shortest path P does not contain a changed edge, we are done

6. otherwise: add changed edges on P to C, repeatfrom 3.

Schultes/Sanders: Route Planning

‘Dynamic Highway-Node Routing'
change afew edge weightsmobile scenario

single pass iterative

|change set] affected guery time | query time | #iterations

(motorway edges) | queries [mS] [ms] | avg max
1 0.4% 2.3 15| 1.0 2

10 5.8% 8.5 1.7 | 1.1 3

100 40.0% 47.1 3.6 | 14 o

1000 | 83.7% 246.3 25.3 | 2.7 9

Schultes/Sanders: Route Planning

4. Many-to-Many Extension

39

Schultes/Sanders: Route Planning 40

‘ Many-to-Many Routing I

[with S. Knopp, F. Schulz (PTV AG), D. Wagner]

Given:
[J graph G = (V,E)
[] set of source nodes SCV

[] set of target nodes T C V

Task: compute |S x |T| distance table

containing the shortest path distances S

Schultes/Sanders: Route Planning

Simple Solutionﬂ

Example: 10000 X 10000 table 2
In Western Europe

[1 apply SSSP algorithm |§] times

~ 10000 X 10s~ one day
(e.g. DIJKSTRA)

[] apply P2P algorithm |§| x |T| times
> ~ d . ~ 100002 X 1ms = one day
(e.g. highway-node routing™)

lrequires about 15 minutes preprocessing time

Schultes/Sanders: Route Planning

‘ Our Solution I

Example: 10000 X 10000 table 2
iIn Western Europe

] -to- lgorith
many-to-many algorithm 23 seconds

based on highway-node routing1

2

lrequires about 15 minutes preprocessing time

Schultes/Sanders: Route Planning D 43

\I\/Iain Idea.

[] instead of S{ x | T| bidirectional highway-node queries

L[] perform SH—T unidirectional highway-node gueries

Algorithm I

[J maintain an |§ x |T | table D of tentative distances

(initialize all entries to ©0)

Schultes/Sanders: Route Planning o 44

[] foreacht € T, perform backward search up to the top level,

store search space entries (t,u,d(u,t))
[] arrange search spaces: create a bucket for each U

[] for each S € § perform forward search up to and including the top level,
at each node U, scan all entries (t,u,d(u,t)) and
compute d(s,u) + d(u,t), update DS, t]

Schultes/Sanders: Route Planning

‘ Asymmetry I

for large distance tables, most time spent on bucket scanning

Solution: use less levels ~~ strengthen the asymmetry

[] backward search spaces get smaller ~~ less bucket entries

[] forward search spaces get bigger

045

Schultes/Sanders: Route Planning o 46
Experiments'

10000 x 10000
|

80

80

Bucket Scanning
Forward Search —
Sorting

Backward Search

60
HEO
60

Time [s]

6 7 8 9 10 11 12

Topmost Level

Schultes/Sanders: Route Planning D 47

Summary'

[1 efficient static approach
— fast preprocessing / fast queries 15 min / 0.9 ms

— outstandingly low memory requirements 0.7 bytes/node ~~ 1.4 ms

[1 can handle practically relevantdynamic scenarios
— change entire cost function typically < 2 minutes

— change a few edge weights

* Update data structures 2 —40ms per changed edge

OR
x Iteratively bypass traffic jams e.g., 3.6 ms in case of 100 traffic jams

[1 extensible tomany-to-many 23s for 10000 X 10000 table

numbers refer to the Western European road network with 18 million nodes

Schultes/Sanders: Route Planning o 48
'Future Work I

L] find simpler / better ways to determine the node sets
S$S505°0%... (work in progress)

[] handle a massive amount of updates

L] deal with time-dependent scenarios

(where edge weights depend on the time of day)

[] allow multi-criteria optimisations

TOLL COLLECT

