
Schultes/Sanders: Route Planning 1

Route Planningin Road Networks
– simple, flexible, efficient –

Dominik Schultes Peter Sanders

Institut für Theoretische Informatik – Algorithmik II

Universität Karlsruhe (TH)

http://algo2.iti.uka.de/schultes/hwy/

Bertinoro, October 1, 2007

?

Schultes/Sanders: Route Planning 2

Static Route Planning in Road Networks

Task: determine quickest route from source to target location

Problem: for large networks, simple algorithms are too slow

Assumption: road network does not change

Conclusion:use preprocessed data to accelerate source-target-queries

(research focus during the last years [→ e.g., 9th DIMACS Challenge])

 correctness relies on the above assumption

Schultes/Sanders: Route Planning 3

Dynamic Scenarios

� change entire cost function

(e.g., use different speed profile)

� change a few edge weights

(e.g., due to a traffic jam)

Schultes/Sanders: Route Planning 4

Constancy of Structure

Weaker Assumption:

� structure of road network does not change

(no new roads, road removal = set weight to ∞)

 not a significant restriction

� classification of nodes by ‘importance’ might be slightly perturbed,

but not completely changed

(e.g., a sports car and a truck both prefer motorways)

 performance of our approach relies on that

(not the correctness)

Schultes/Sanders: Route Planning 5

Highway-Node Routing

1. basic concepts:overlay graphs, covering nodes

2. lightweight, efficient static approach

3. dynamic version

4. many-to-manyextension

S

T

Schultes/Sanders: Route Planning 6

1. Basic Concepts

Schultes/Sanders: Route Planning 7

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

� graph G = (V,E) is given

� select node subset S ⊆V

Schultes/Sanders: Route Planning 8

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

� graph G = (V,E) is given

� select node subset S ⊆V

� overlay graph G′ := (S,E ′)

determine edge set E ′ s.t. shortest path distances are preserved

Schultes/Sanders: Route Planning 9

Minimal Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

� graph G = (V,E) is given

� select node subset S ⊆V

� minimal overlay graph G′ := (S,E ′) where

E ′ := {(s, t) ∈ S×S | no inner node of the shortest s-t-path belongs to S}

Schultes/Sanders: Route Planning 10

Covering Nodes

Definitions:

� covered branch: contains a node from S

� covered tree: all branches covered

� covering nodes: on each branch, the node u ∈ S closest to the root s

s

Schultes/Sanders: Route Planning 11

Query: Intuition

� bidirectional

� perform search in G till search trees are covered by nodes in S

s

t

Schultes/Sanders: Route Planning 12

Query: Intuition

� bidirectional

� perform search in G till search trees are covered by nodes in S

� continue search only in G′

s

t

Schultes/Sanders: Route Planning 13

Overlay Graph: Construction

for each node u ∈ S

� perform a local search from u in G

� determine the covering nodes

� add an edge (u,v) to E ′ for each covering node v

u

v

v’

Schultes/Sanders: Route Planning 14

Covering Nodes

Conservative Approach:

� stop searching in G when all branches are covered

s

big city

long−distance ferry

� can be very inefficient

Schultes/Sanders: Route Planning 15

Covering Nodes

Aggressive Approach:

� do not continue the search in G on covered branches

s

fast road

slow road

v

u

� can be very inefficient

Schultes/Sanders: Route Planning 16

Covering Nodes

Compromise:

� introduce parameter p

� do not continue the search in G on branches that

already contain p nodes from S

� in addition: stop when all branches are covered

� p = 1→ aggressive

� p = ∞→ conservative

� works very well in practice

Schultes/Sanders: Route Planning 17

Highway Hierarchies

� previous static route-planning approach [SS05–06]

� determines a hierarchical representation of nodes and edges

Schultes/Sanders: Route Planning 18

2. Static Highway-Node
Routing

−→
G

←−
G

s t

Level 1

Level 2

Level 0

s1 t1

s2 t2

Schultes/Sanders: Route Planning 19

Static Highway-Node Routing

� extend ideas from

– multi-level overlay graphs [HolzerSchulzWagnerWeiheZaroliagis00–07]

– highway hierarchies [SS05–06]

– transit node routing [BastFunkeMatijevicSS06–07]

� use highway hierarchies to classify nodes by ‘importance’

i.e., select node sets S1⊇ S2⊇ S3 . . .⊇ SL

(crucial distinction from previous separator-based approach)

� construct multi-level overlay graph

G0 = G = (V,E),G1 = (S1,E1),G2 = (S2,E2), . . . ,GL = (SL,EL)

(just iteratively construct overlay graphs)

Schultes/Sanders: Route Planning 20

Static Highway-Node Routing

� extend ideas from

– multi-level overlay graphs [HolzerSchulzWagnerWeiheZaroliagis00–07]

– highway hierarchies [SS05–06]

– transit node routing [BastFunkeMatijevicSS06–07]

� use highway hierarchies to classify nodes by ‘importance’

i.e., select node sets S1⊇ S2⊇ S3 . . .⊇ SL 13 min

(crucial distinction from previous separator-based approach)

� construct multi-level overlay graph 2 min

G0 = G = (V,E),G1 = (S1,E1),G2 = (S2,E2), . . . ,GL = (SL,EL)

(just iteratively construct overlay graphs)

(experiments with a European road network with≈ 18 million nodes)

Schultes/Sanders: Route Planning 21

Query: Aggressive Variant

� node level ℓ(u) := max{ℓ | u ∈ Sℓ}

� forward search graph
−→
G :=

(

V,
{

(u,v) | (u,v) ∈
SL

i=ℓ(u) Ei

})

� backward search graph
←−
G :=

(

V,
{

(u,v) | (v,u) ∈
SL

i=ℓ(u) Ei

})

� perform one plain Dijkstra search in
−→
G and one in

←−
G

−→
G

←−
G

s t

Level 1

Level 2

Level 0

s1 t1

s2 t2

Schultes/Sanders: Route Planning 22

Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0
d0(s, t)

shortest path from s to t in G = G0

Schultes/Sanders: Route Planning 23

Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0

s1 s2 t2 t1
d1(s1, t1)

d0(s1, t1)

overlay graph G1 preserves distance from s1 ∈ S1 to t1 ∈ S1

Schultes/Sanders: Route Planning 24

Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0

s1 s2 t2 t1

s2 t2
d2(s2, t2)

d1(s2, t2)

overlay graph G2 preserves distance from s2 ∈ S2 to t2 ∈ S2

Schultes/Sanders: Route Planning 25

Proof of Correctness

−→
G

←−
G

s t

Level 1

Level 2

Level 0

s1 t1

s2 t2

−→
G :=

(

V,
{

(u,v) | (u,v) ∈
SL

i=ℓ(u) Ei

})

←−
G :=

(

V,
{

(u,v) | (v,u) ∈
SL

i=ℓ(u) Ei

})

Schultes/Sanders: Route Planning 26

Stall-on-Demand

� a node v can ‘wake’ a node u if ℓ(u) > ℓ(v)

� u can ‘stall’ v (if δ(u)+w(u,v) < δ(v))

i.e., search is not continued from v

s

fast road

slow road

v

u

� stalling can propagate to adjacent nodes

� does not invalidate correctness (only suboptimal paths are stalled)

Karlsruhe→
Bertinoro

NO Stall-on-Demand

search space size:
31 756

Karlsruhe→
Bertinoro

Stall-on-Demand

search space size:
1 179

Schultes/Sanders: Route Planning 29

Memory Consumption / Query Time

different trade-offs between memory consumption and query time

for example:

� 9 bytes per node overhead→ 0.88 ms

store complete multi-level overlay graph

� 0.7 bytes per node overhead→ 1.44 ms

store only forward and backward search graph
−→
G and

←−
G

(
−→
G and

←−
G are independent of s and t)

numbers refer to the Western European road network with 18 million nodes

Schultes/Sanders: Route Planning 30

3. Dynamic Highway-Node
Routing

Schultes/Sanders: Route Planning 31

Dynamic Highway-Node Routing

change entirecost function

� keep the node sets S1⊇ S2⊇ S3 . . .

� recompute the overlay graphs

speed profile default fast car slow car slow truck distance

constr. [min] 1:40 1:41 1:39 1:36 3:56

query [ms] 1.17 1.20 1.28 1.50 35.62

#settled nodes 1 414 1 444 1 507 1 667 7 057

Schultes/Sanders: Route Planning 32

Dynamic Highway-Node Routing

change afew edge weights

� server scenario:if something changes,

– update the preprocessed data structures

– answer many subsequent queries very fast

� mobile scenario:if something changes,

– it does not pay to update the data structures

– perform single ‘prudent’ query that

takes changed situation into account

Schultes/Sanders: Route Planning 33

Dynamic Highway-Node Routing

change afew edge weights, server scenario

� keep the node sets S1⊇ S2⊇ S3 . . .

� recompute only possibly affected parts of the overlay graphs

– the computation of the level-ℓ overlay graph consists of

|Sℓ| local searches to determine the respective covering nodes

– if the initial local search from v ∈ Sℓ has not touched a now

modified edge (u,x), that local search need not be repeated

– we manage sets Aℓ
u = {v ∈ Sℓ | v’s level-ℓ preprocessing

might be affected when an edge (u,x) changes}

Schultes/Sanders: Route Planning 34

Dynamic Highway-Node Routing

change afew edge weights, server scenario

Road Type

U
pd

at
e

T
im

e
[m

s]

0.
1

1
10

10
0

0.
1

1
10

10
0

any motorway national regional urban

add traffic jam
cancel traffic jam
block road

Schultes/Sanders: Route Planning 35

Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

1. keep the node sets S1⊇ S2⊇ S3 . . .

2. keep the overlay graphs

3. C := all changed edges

4. use the sets Aℓ
u (considering edges in C) to determine for each

node v a reliable level r(v)

5. during a query, at node v

� do not use edges that have been created in some level > r(v)

� instead, downgrade the search to level r(v)

Schultes/Sanders: Route Planning 36

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7

Schultes/Sanders: Route Planning 37

Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

1. keep everything (as before)

2. C := /0

3. use the sets Aℓ
u (considering edges in C) to determine for each

node v a reliable level r(v) (as before)

4. ‘prudent’ query (as before)

5. if shortest path P does not contain a changed edge, we are done

6. otherwise: add changed edges on P to C, repeat from 3.

Schultes/Sanders: Route Planning 38

Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

single pass iterative

|change set| affected query time query time #iterations

(motorway edges) queries [ms] [ms] avg max

1 0.4 % 2.3 1.5 1.0 2

10 5.8 % 8.5 1.7 1.1 3

100 40.0 % 47.1 3.6 1.4 5

1 000 83.7 % 246.3 25.3 2.7 9

Schultes/Sanders: Route Planning 39

4. Many-to-Many Extension

S

T

Schultes/Sanders: Route Planning 40

Many-to-Many Routing

[with S. Knopp, F. Schulz (PTV AG), D. Wagner]

Given:

� graph G = (V,E)

� set of source nodes S⊆V

� set of target nodes T ⊆V

Task: compute |S|× |T | distance table

containing the shortest path distances S

T

Schultes/Sanders: Route Planning 41

Simple Solutions

Example: 10 000× 10 000 table

in Western Europe

� apply SSSP algorithm
︸ ︷︷ ︸

|S| times

(e.g. DIJKSTRA)
≈ 10 000× 10 s≈ one day

� apply P2P algorithm
︸ ︷︷ ︸

|S|× |T | times

(e.g. highway-node routing1)
≈ 10 0002× 1 ms≈ one day

1requires about 15 minutes preprocessing time

Schultes/Sanders: Route Planning 42

pOur Solution

Example: 10 000× 10 000 table

in Western Europe

� many-to-many algorithm

based on highway-node routing1
23 seconds

ts

1requires about 15 minutes preprocessing time

S

T

Schultes/Sanders: Route Planning 43

Main Idea

� instead of |S|×|T | bidirectional highway-node queries

� perform |S|+ |T | unidirectional highway-node queries

Algorithm

� maintain an |S|× |T | table D of tentative distances

(initialize all entries to ∞)

Schultes/Sanders: Route Planning 44

� for each t ∈ T , perform backward search up to the top level,

store search space entries (t,u,d(u, t))

� arrange search spaces: create a bucket for each u

� for each s ∈ S, perform forward search up to and including the top level,

at each node u, scan all entries (t,u,d(u, t)) and

compute d(s,u)+d(u, t), update D[s, t]

Schultes/Sanders: Route Planning 45

Asymmetry

for large distance tables, most time spent on bucket scanning

Solution: use less levels strengthen the asymmetry

� backward search spaces get smaller less bucket entries

� forward search spaces get bigger

Topmost Level

T
im

e
[s

]

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80

6 7 8 9 10 11 12

10000 x 10000

0
20

40
60

80

Bucket Scanning
Forward Search
Sorting
Backward Search

Schultes/Sanders: Route Planning 46

Experiments

Schultes/Sanders: Route Planning 47

Summary

� efficient static approach

– fast preprocessing / fast queries 15 min / 0.9 ms

– outstandingly low memory requirements 0.7 bytes/node 1.4 ms

� can handle practically relevantdynamic scenarios

– change entire cost function typically < 2 minutes

– change a few edge weights

∗ update data structures 2 – 40 ms per changed edge

OR
∗ iteratively bypass traffic jams e.g., 3.6 ms in case of 100 traffic jams

� extensible tomany-to-many 23 s for 10 000× 10 000 table

numbers refer to the Western European road network with 18 million nodes

Schultes/Sanders: Route Planning 48

Future Work

� find simpler / better ways to determine the node sets

S1⊇ S2⊇ S3 . . . (work in progress)

� handle a massive amount of updates

� deal with time-dependent scenarios

(where edge weights depend on the time of day)

� allow multi-criteria optimisations

