
Fast Computation of Distance Tables

using Highway Hierarchies

Sebastian Knopp Peter Sanders Dominik Schultes Frank Schulz

Dorothea Wagner

July 25, 2006

Abstract

This technical report considers the problem of computing distances of shortest paths
between all pairs of nodes from given sets of sources and targets. The straightforward
method to solve this is to run Dijkstra’s Algorithm once for every source: during one run
the distances from one source node to all target nodes are determined. If we deal with
large road networks and numerous sources and targets this method affords a lot of time.
Hence, we are interested in faster algorithms for this problem.

For point to point shortest path queries in large road networks the Highway Hierarchies
algorithm on average is about 8 000 times faster than Dijkstra’s Algorithm. In this paper,
we describe how this concept of very efficient and accurate route planning can be used
to compute distance matrices. A first implementation of the presented approach already
yields a speedup of over 1 500, relative to the time needed by Dijkstra’s Algorithm.

1 Introduction

Given a weighted graph that represents a street network, a problem instance consists of a
number of sources and destinations located in the graph. For these sets of nodes we want
to know the distances from all sources to all destinations. Hence the result of such an
M×N query is a matrix of distances. An entry of this distance table denotes the distance
from the source corresponding to the current column, to the target corresponding to the
current row.

The traditional way to compute distances in graphs is Dijkstra’s Algorithm. To create
a distance matrix, this single source shortest paths algorithm can be run once for every
source node. It expands the search circularly around one source node and can be stopped
after all targets have been found.

An important application for this algorithmic problem appears in the field of logistics,
where the first step of tour planning for vehicles is the computation of such a distance
table. Note that in practice the overall running time for tour planning often is dominated
by the computation of the distance matrix if the plain version of Dijkstra’s Algorithm
is used. So this is a situation, where it is very interesting to speed up the calculation
of shortest path distance tables. Another application is the computation of very large
distance matrices for fast distance approximations based on table lookups.

Various recent publications deal with accelerating the determination of a single route
with one source and one destination in large sparse graphs that represent road networks.
Most of them perform a preprocessing step and with that precomputed information they
are able to answer shortest path queries very quickly. One of the fastest known techniques
in terms of preprocessing and query time is the concept of Highway Hierarchies. For the

1

road network of Europe the preprocessing takes only 15 minutes and single pair queries
can be computed in 0.76 ms on average.

In this work we will show how the Highway Hierarchies approach can be applied to
the computation of distance matrices. The main idea is to make use of the fact, that
the Highway Hierarchies search spaces are very small, so a lot of them can be stored
contemporary in main memory.

2 Preliminaries

In this section we give basic definitions of graphs, a formal problem description and outline
Dijkstra’s Algorithm.

A directed graph G = (V, E) is a pair of nodes V and edges E ⊂ V ×V . We will denote
the number of nodes |V | by n and the number of edges |E| by m. We call G = (V, E)
with E = {(v, u) | (u, v) ∈ E} the converse graph of G.

A path P in the graph G is a sequence of nodes (v0, v1, . . . , vn) such that (vi, vi+1) ∈ E
for all 0 ≤ i < n. If 0 ≤ k < l ≤ n then P |vk→vl

denotes the subpath (vk, . . . , vl) of P .
Edge weights are given by a function w : E → R>0. The length l(P) of a path is the sum
of the weights of its edges l(P) =

∑n

i=0
w(vi, vi+1). We call P a shortest path from s to t,

if there is no P ′ with l(P ′) < l(P) and its length is denoted by d(P). The distance d(s, t)
of two vertices is the length of a shortest path from s to t.

The task we address in this work is formally described in the following. Given a set
of sources S = {si | 0 ≤ i < M} ⊂ V and a set of targets T = {ti | 0 ≤ j < N} ⊂ V
we want to compute a distance matrix di,j = D ∈ R

M×N such that di,j = d(si, tj) is the
length of a shortest path from si to tj . We will refer to this as the M×N shortest path
problem. We can assume w.l.o.g. that N ≤ M , else we swap S and T and consider the
given problem instance in the converse graph.

The classic algorithm for the Single Source Shortest Path problem is the Algorithm of
Dijkstra, which finds shortest paths form a source s to all vertices in the graph. During
the algorithm every node takes one of the three states settled, reached or unreached.
Initially all nodes are unreached. Nodes to those any path - not necessarily shortest - has
been found are reached. A node v is settled, if a shortest path from s to v has been
found, and the distance is exact. We call a tentative distance from s to v exact, if it is
equal to the length of a shortest path from s to v.

Reached nodes are managed in a priority queue, which supports the operations insert,
decreaseKey and extractMin. There is a function RELAX, that checks for an edge (u, v)
if it can improve the path to v. The method insert adds an element to the queue. This
happens when an edge to an unreached node is relaxed. Then this node is inserted into
the queue with its tentative distance as key. Calls to decreaseKey are made if RELAX can
improve the distance to a reached node. This step updates the key to the new tentative
distance. Calls to extractMin are performed to get the smallest element of the queue.
Elements obtained by this operation are known to be exact and can be set to settled.

3 Highway Hierarchies

In the following, we repeat the concept of Highway Hierarchies method as it is presented
in [1]. The query part of the Highway Hierarchies algorithm is the core of our fast distance
matrix algorithm that we present in section 4. We give an overview of the terminology of
Highway Hierarchies and explain the query algorithm. The preprocessing data we need
for M×N queries is exactly the same as for point to point queries, so for information
about the construction process we refer to [1]. This section begins with the definition
of a highway network and its core and continues with an explanation of the Highway
Hierarchies query algorithm.

2

3.1 Definitions

A highway hierarchy of a graph G consists of a given number of levels G0, G1, . . . , GL,
where Gl = (Vl, El) and is defined inductively:

• Base Case: G′0 := G0 := G, the original graph.

• First Step: Definition of a highway network Gl+1 of Gl.

• Second Step: Contraction: Bypassable nodes define the core G′l of level l.

First Step (highway network). The definition of a highway network is based on neigh-
bourhood radii, that are chosen for every node u in a level l: r←l (u) for the forward graph
and r→l (u) for the converse graph. Those nonnegative reals define the neighbourhood with
respect to the forward graph N→l (u) := {v ∈ V ′l | dl(u, v) ≤ r→l (u)} and analogously
the neighbourhood with respect to the backward graph N←l (u) := {v ∈ V ′l | dl(v, u) ≤
r←l (u)}.

The highway network Gl+1 = (Vl+1, El+1) of a graph G′l is the subgraph of G′l induced
by the set of edges El+1 that is defined as follows: an edge (u, v) ∈ E′l belongs to El+1

if and only if there are nodes s, t ∈ V ′l such that the edge (u, v) appears in the canonical
shortest path (s, . . . , u, v, . . . , t) from s to t in G′l with the property that v /∈ N→l (s) and
u /∈ N←l (t).

Second Step (core). For given bypassable nodes Bl ⊆ Vl the set Sl of shortcut edges that
bypass the nodes in Bl is defined: for each path P = (u, b1, b2, . . . , bk, v) with u, v ∈ Vl\Bl

and bi ∈ Bl, 1 ≤ i ≤ k, the set Sl contains an edge (u, v) with w(u, v) = l(P). Then
the core G′l = (V ′l , E′l) of level l is defined by its node and edge sets: V ′l := Vl\Bl and
E′l := (El ∩ (V ′l × V ′l)) ∪ Sl.

3.2 Query

Now we can describe the Highway Hierarchies query algorithm. This is a modification
of Dijkstra’s Algorithm and can be performed in the converse graph as well as in the
original graph. We describe the query without considering any abort criteria and we only
pay attention to expanding the search from one source node. This corresponds to the
exploration of the complete search space as described on page 47 in [3], where bounds
for the worst case bounds are constructed. This query algorithm is used in section 4 to
obtain the desired distance matrix.

In addition to the tentative distance δ from the source the key of a node includes
the search level l and the gap to the next applicable neighbourhood border. In order
to sort the nodes by a priority, we comprehend the keys as triples (δ,−l, gap) and use
lexicographical ordering.

Starting at a node s a local search in level 0 is performed, the gap to the next border
is set to the neighbourhood radius of s in level 0. When a node v is settled, the gap of v
is decreased by the length of the edge from the parent u of v. So we can detect if an edge
crosses a neighbourhood border by checking if its new gap would be negative. In this case
we ascend to a higher level l and we call v an entrance point to this level. An edge (u, v)
is skipped, if its level is less than the new search level l (Restriction 1), otherwise v adopts
the new search level l and the gap to the border of the neighbourhood of u in level l.

If an entrance point v to a level l is a bypassed node, we are outside the core and the
gap of v is set to infinity. When a node u ∈ V ′l is settled, the core is entered and the gap
to the border of the level l neighbourhood is assigned to u. Once the core of a certain
level was entered, no edges leading to a bypassed node are relaxed (Restriction 2).

3

4 Computing Distance Tables

In this section, we describe how the Highway Hierarchies query algorithm can be applied
to solve the problem of finding M×N shortest paths. Even in very large graphs, with
millions of nodes, only very few nodes are visited by the Highway Hierarchies query
algorithm. Because of this small search space sizes we are able to store distances to all
visited nodes for a lot of search spaces. This is the basic idea for our M×N Highway
Hierarchy algorithm: we remember search spaces and intersect them to compute the
desired distance matrices quickly.

4.1 Basic Algorithm

We start this section with introducing the terms of forward and backward search spaces
for Highway Hierarchies: the Highway Hierarchy Forward Search Space FWS(s) ⊆ V for
a node s ∈ V is the set of nodes that are settled during a query that is performed as
described in section 3.2 originating from a source node s in the graph G. Respectively
the Highway Hierarchy Backward Search Space BWS(t) ⊆ V for a node t ∈ V is the set
of nodes that are settled during a query originating from a target node t in the converse
graph G.

If we omit the abort on success criterion of the Highway Hierarchies query algorithm
for point to point queries, we can say that the shortest path distance from a source node
s to a target node t is determined by identifying a node v ∈ FWS(s) ∩ BWS(t) with
d(s, v) + d(v, t) = min{d(s, v) + d(v, t) | v ∈ FWS(s) ∩ BWS(t)}. In this way one can
obtain the distance from s to t for all the pairs (s, t) ∈ S×T . We will use this formulation
of the Highway Hierarchies algorithm for point to point queries to obtain a fast method
to obtain entries of the desired distance matrix. The next paragraph describes, how the
search spaces can be intersected and how their minimum can be determined.

First, we initialise the distance matrix entries to infinity. We assumed that N ≤ M ,
thus for all n ∈ BWS(t) we store the distances d(n, t) to the target t ∈ T . This can be
done with a backward search for every target node that maintains a data structure b(v)
for every node v where distances to targets are remembered. When a node v becomes
settled during a search originating in t, we store the distance d(v, t) in b(v). After we have
remembered the backward search spaces in this way, we can start searching the forward
direction. During forward search no extra data has to be stored. Again we use the
Highway Hierarchies query algorithm and modify it by introducing additional operations
when a node becomes settled. At a node v we update all tentative entries of the distance

1 forall (s, t) ∈ S×T
2 D(s, t)←∞
3 forall t ∈ T
4 BackwardSearch(t)
5 settle(v) : store d(v, t) in b(v) at node v
6 forall s ∈ S
7 ForwardSearch(s)
8 settle(v) : forall d(v, t) ∈ b(v)
9 if (d(s, v) + d(v, t) < D(s, t)) then

10 D(s, t)← (d(s, v) + d(v, t)

Figure 1: Highway Hierarchies algorithm for M×N Shortest Paths. During a forward or a

backward search additional operations are performed when a node becomes settled. In the code

listing above those modifications are denoted below the respective call of a Highway Hierarchy

search algorithm.

4

matrix that can be improved by a path including the current node v. We can check this
by examining for every d(v, t) ∈ b(v) if d(s, v) + d(v, t) < D(s, t) where D(s, t) denotes
the current distance matrix entry for the source s and the target t. An overview of the
algorithm is presented in Figure 1.

4.2 Optimisations

Asymmetry due to Entrance Points. The time we spend during the algorithm is not only
dependent on the search space sizes. Also the time spent per node is relevant. If a lot of
nodes have attached a lot of distance information, the time needed to update the distance
table and to walk through distances attached to one node can dominate the query time.
We tackle this issue by introducing an asymmetric approach. We reduce the number of
nodes with an attached backward distance by stopping the backward searches earlier: the
search can be stopped after all entrance points to the topmost level are settled. The
forward search is not aborted and still expands completely in the topmost level.

To show that this technique preserves the correctness of the algorithm we consider a
node v ∈ FWS(s) ∩ BWS(t) lying on a shortest path P from s to t. If v is settled during
a backward search with the new entrance point restriction, everything works as usual. If
not, we consider the entrance point w ∈ V ′L to the topmost level, that is a predecessor
of v in the shortest path tree originating at t. We know that w ∈ FWS(s) because the
forward search not aborted. Hence, we have a node on the shortest path P from s to t
that is found by both, the forward and the backward search and thereby we know that
the correct shortest path distance is written to the distance matrix.

Level Restriction. The asymmetry, occurring with the application of the entrance point
restriction, is strengthened if we restrict the search to a certain maximum level γ. We do
not ascend higher than that certain level. This restriction can be regarded as running the
query on a graph with a Highway Hierarchies preprocessing with topmost level γ.

Together with the entrance points restriction of the preceding paragraph the level
restriction further reduces the size of the backward search spaces. The forward search
spaces and the overall search space grow, but we spend less time per node. So the choice
of the level we abort at, is a parameter that has to deal with this tradeoff. Dependent on
the problem size different abort levels are useful. The bigger the matrix is, the smaller
we can choose the maximum level, because for larger matrices we have more backward
distances to maintain and to compare with. We also save storage space for the backward
distances in main memory which could be a limiting issue for very large matrices.

Column Maximum. Until here, we continued every forward search, until the search
space is fully expanded. We can use the abort criterion of the point to point Highway
Hierarchy algorithm as well to stop a forward search earlier. To do so we maintain the
column maximum α(s) := max{D(s, t) | t ∈ T } for a source node during a forward search
from s. That is the maximum of the tentative distances from the column corresponding to
s in the distance matrix. If the minimum element of the priority queue u during a forward
search has a key δ(u) ≥ α(s) we know that we can not improve any of the tentative
distances in the current column any more. Hence we can stop the current forward search.

Sorting Backward Distances. To further reduce the time spent per node we can sort
the distances attached to nodes according to their backward distance. So we consider
the backward distances b(v) at a node v in ascending order. Once we regard a distance
d(v, t) ∈ b(v) with d(s, v) + d(v, t) ≥ α(s) we are finished for this node, because the
ascending order guarantees that no tentative distance can be improved for all further
nodes of b(v).

5

5 Experimental Results

We implemented a first version with the basic ideas of the presented M×N algorithm.
Although this is just a rudimentary version, not including the refinements described in
section 4.2, the results are promising. The implementation uses the static graph data type
of LEDA 5.0 and was compiled with the GNU C++ compiler 3.4.4 using optimisation
level 3. The experiments were run on a 32-Bit computer with 1024 MB of main memory
and an Intel Celeron processor clocked at 2.66 GHz.

Computing a quadratic distance matrix of 100 randomly chosen nodes in the road
network of Germany took more than 16 minutes with Dijkstra’s Algorithm, the Highway
Hierarchies M×N algorithm finished after 0.75 seconds. In a second experiment we
used locations from a real world use case: 173 nodes located on the street network of
the four countries Belgium, Germany, Luxemburg and the Netherlands. Here Dijkstra’s
Algorithm needed more than 41 minutes. Using Highway Hierarchies, the distance table
was computed after 1.34 seconds. The present results of our experiments already state
that the Highway Hierarchies method allows a speedup of an order of magnitudes for the
calculation of a distance matrix.

References

[1] Dominik Schultes and Peter Sanders. Engineering Highway Hierarchies. 14th European
Symposium on Algorithms (ESA), 2006.

[2] Dominik Schultes and Peter Sanders. Highway Hierarchies Hasten Exact Shortest
Path Queries. 13th European Symposium on Algorithms (ESA), 2005.

[3] Dominik Schultes. Fast and Exact Shortest Path Queries Using Highway Hierarchies.
Master-Arbeit, Universität des Saarlandes, 2005.

6

	Introduction
	Preliminaries
	Highway Hierarchies
	Definitions
	Query

	Computing Distance Tables
	Basic Algorithm
	Optimisations

	Experimental Results

