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Algorithmics as Algorithm Engineering
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Route Planning: How do | get there from here ?
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Road Networks

[ ] Large, e.g. N =18 000 000 nodes

for Western Europe
[] Sparse, i.e., m= O(n) edges

[ ] Almost planar, i.e.,

few edges cross

[ ] Quickest paths use

Important streets

[ ] Changes are slow/few, i.e.,

Fast, near linear space preprocessing OK

We want fast, exact, point-to-point queries
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DIJKSTRA'’s Algorithm

not practicable

for large road networks
Dijkstra

(e.g. Western Europe:

~ 18 000 000 nodes)

. . Improves the running time,
bidirectional P 9

Dijkstra but still too slow
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Goal-Directed Search

D -
D o>

A* [Hart, Nilsson, Raphael 68]: not effective for travel time

Geometric Containers [Wagner et al. 99-05]:

high speedup but quadratic preprocessing time

Landmark A* [Goldberg et al. 05-]: precompute distances to &~ 20

landmarks ~~ moderate speedups, preprocessing time, space

Precomputed Cluster Distances [S, Maue 06]:

more space-efficient alternative to landmarks
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Hierarchical Methods

Planar graph (theory) [Fakcharoenphol, Rao, Klein 01-06]: C)(I‘llog2 n)
space and preprocessing time; O(\/ﬁlog n) guery time
Planar approximate (theory) [Thorup 01]: O((nlogn)/€) space and

preprocessing time; almost constant query time

Separator-based multilevel [Wagner et al. 99—]:

works, but does not capitalize on importance induced hierarchy

Reach based routing [Gutman 04]:

elegant, but initially not so successful
Highway hierarchies [SS 05—]: stay tuned
Advanced reach [Goldberg et al. 06—]: combinable with landmark A"
Transit-node routing [Bast, Funke, Matijevic, S, S 07-]: stay tuned

Highway-node routing [SS 07—-]: stay tuned
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Highway Hierarchies

[SS 05-]
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Naive Route Planning
1. Look for the next reasonable motorway
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Nalve Route Planning
1. Look for the next reasonable motorway

2. Drive on motorways to a location close to the target
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Nailve Route Planning

1. Look for the next reasonable motorway

2. Drive on motorways to a location close to the target
3. Search the target starting from the

motorway exit
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Commercial Approach

Heuristic Highway Hierarchy

[ ] complete search in local area
[ ] search in (sparser) highway network

L] iterate ~~ highway hierarchy

Defining the highway network:

use road category (highway, federal highway, motorway,. . .)

-+ manual rectifications
[ ] delicate compromise

[1 speed< accuracy
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Our Approach

Exact Highway Hierarchy

[ ] complete search in local area
[ ] search in (sparser) highway network

L] iterate ~~ highway hierarchy

Defining the highway network:

minimal network that preserves all shortest paths
[] fully automatic (just fix neighborhood size)

[] uncompromisingly fast
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Constructing Exact Highway Hierarchies

Alternate between two phases:

Edge reduction to highway edges needed outside local searches.
A(S) A(t)

©@®

- Highway >
/ \

contracted network ("core")

= non-bypassed nodes

+ shortcuts

Node reduction.

Remove low degree nodes
bypassed

nodes
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Example: Karlsruhe
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Query

Bidirectional version of Dijkstra’s Algorithm

Restrictions:

[ ] Do not leave the neighbourhood of the

entrance point to the current level.

Instead: switch to the next level.

] Do not enter a component of @ entrance point to level|0
bypassed nodes. ® entrance pOint to level |1
@® entrance point to level |2
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Query

Example: from Karlsruhe, Am Fasanengarten 5

to Palma de Mallorca
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Bounding Box: 20 km Level O Search Space
/ S

Vi
4]
etz

PeS . = = 1
s <O e
\\\“\Qt“g’/ PPL
N N/
\ \\0«;' q

[ A\ : =
% | S N N o
LR N - S s
e

>
=
X SIS
—Z o
‘ L e

=N
LA / i;'/» /7 /> N
T [ R ¥
D E P
\,

\ 7 % w I
Ny 7 I WAV A
723 T PNy v
T |
" ““‘ ~_

Y
\

A S s
AR

L]

Viss

20



Sanders/Schultes: Route Planning o 21
Bounding Box: 20 km Level 1 Search Space
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Bounding Box: 20 km Level 2
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Bounding Box: 20 km
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Bounding Box: 80 km Level 4
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Bounding Box: 400 km  Level 6

Search Space
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Level 8

jn ' i

—— .L“?-‘_'




Sanders/Schultes: Route Planning
Level 10

Search Space
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Optimisation: Distance Table

Construction:
[ ] Construct fewer levels.

[ ] Compute an all-pairs distance table

for the topmost level L.

D -

e.g. 4 instead of 9

13 465 X 13 465 entries
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Distance Table Query:

L] Abort the search when all entrance points in the

core of level L have been encountered. ~ 55 for each direction

[ ] Use the distance table to bridge the gap.

~ 55 X 55 entries
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Local QuerieS(Highway Hierarchies)

N — Q N
| @ Europe (15 min., 68 B/node) I
B USA/CAN (20 min., 69 B/node)

Query Time [ms]
1
|

l l l l l l l l l l l l l l
11 212 213 214 215 216 217 218 219 220 221 222 223 224

N

Dijkstra Rank
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Combination Goal Directed Search (landmarks)

[with D. Delling, D. Wagner]

[ 1 About 20 % faster than HHs -+ distance tables

[ ] Significant speedup for approximate queries
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Many-to-Many Routing

[with S. Knopp, F. Schulz (PTV AG), D. Wagner]
Find distances for all (S,t) € Sx T
Applications: vehicle routing, TSP,
traffic simulation,

subroutine in peprocessing algorithms.

For example,
10 000 X 10 000 table

iIn =1 min
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Transit-Node Routing

[with H. Bast and S. Funke, DIMACS 06, Alenex 07, Science 07]
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Example:
Karlsruhe — Copenhagen
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Example:
Karlsruhe — London
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Observations forlong-distancetravel Europe ~

1. leaves area via one of only a few access points 10

~~ store them for each node

2. all access points come from a small set of transit nodes 10 000

~~ store distances between all transit-node pairs

{
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Transit-Node Routing

Preprocessing Our Implementation
[ identify transit-node set 7 C V upper levels of HH
[] compute complete |7 | X |T | distance table many-to-many

[] for each node: identify its access points (mapping A1V — 27),

store the distances HH-search

Query (source Sand target t given): compute

diop(S,t) :=min{d(s,u)+d(u,v)+d(vt) :ue A(s),ve At)}
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Transit-Node Routing Our Implementation

Locality Filter :

local cases must be filtered (~~ special treatment) Intersection of
L:V xV — {true,false} disks around
—L(s,t) implies d(s,t) = Ciop(S,1) Sandt

Additional Layers:

Local cases: use secondary transit-node set.

secondary distance table: generalized
store only distances between many-to-many
“nearby” secondary transit-nodes.

... secondary locality filter, tertiary transit-nodes,. . .

Base case: very limited local search
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Example
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Local QuerieS(Transit-Node Routing, Europe)

Query Time [us]

1000

eco: 46 min, 110 B/node

gen:164 min, 251 B/node [

[

[

[

[

[

[

[

[

0T T

rF 1 1 1T 1T 1

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Dijkstra Rank

1000

100
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Summary

Highway Hierarchies: Fast routing, fast preprocessing, low space, few
tuning parameters, basis for many-to-many, transit-node routing,

highway-node routing. stay tuned

Many-to-Many: Huge distance tables are tractable.

Subroutine for transit-node routing.

Transit-Node Routing: Fastest routing so far.
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Summary: A Horse-Race Perspective

L) -

method first date size space | preproc. speedup
pub. mmlyy | n/10°  Byt/n [min]

separator multi-level [SWW9O9] 04/99 0.1 ? | > 5400 52
edge flags (basic) [Lau04] 03/04 6 13 299 523
landmark A* [GolHar05]  07/04 (18) 72 13 28
edge flags [KMSO05] 01/05 1 141 2163 1470
HHs (basic) [SS05] 04/05 18 29 161 2 645

[GKWO6] 10/05 18 82 1625 1559
adv. reach [GKWO06] 08/06 18 32 144 3830
adv. HHs [DSSWO06]  08/06 18 76 22 11496
high-perf. multi-level [Mul06] 06/06 18 181 11520 401109
transit nodes (gen) IBFMSSO07]  10/06 18 251 164 1129143
highway nodes (mem) [SSO07] 01/07 18 2 24 4079
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Summary: An Application Perspective

HH= highway hierarchy
Static low-cost mobile route planning: low space HHs
Static server-based: transit-node routing
Logistics: Many-to-many HHs (HNR when edge weights change often)
Microscopic Traffic Simulation: transit-node routing ?

Macroscopic Traffic Simulation: Many-to-many HHs
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Future Work I: More on Static Routing

[ ] Better choices for transit-node sets

(use centrality measures, separators, explicit optimization,...)

[ ] Better integration with goal directed methods.

(PCDs, A", edge flags, geometric containers)

[ ] Experiments with other networks.
(communication networks, VLSI, social networks, computer

games, geometric problems, ...)
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Future Work Il:  Theory Revisited

[ ] Correctness proofs

[ ] Stronger impossibility results (worst case)

L] Analyze speedup techniques for model graphs

[ ] Characterize graphs for which a particular (new?) speedup

technique works well

[ ] A method with low worst-case query time,

but preprocessing might become quadratic ?
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Future Work I1l: Towards Applications

L] Turn penalties (implicitly represented)

Just bigger but more sparse graphs ?

[ ] Parallelization (server scenarios, logistics, traffic simulation)

easy (construction, many-to-many, many queries)

[ ] Mobile platforms

~~ adapt to memory hierarchy (RAM <« flash)

~~ data compression
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Future Work IV: Beyond Static Routing

[ ] Dynamic routing (e.g. for transit-node routing) stay tuned

[ ] Time-dependent networks

(public transportation, traffic-dependent travel time)
[ ] Preprocessing for an entire spectrum of objective functions

[ ] Multi-criteria optimization

(time, distance, fuel, toll, driver preferences,...)

[ Approximate traffic flows

(Nash-equilibria, (fair) social optima)
L] Traffic steering (road pricing, .. .)

[ ] Stochastic optimization
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An Algorithm Engineering Perspective

Models: Preprocessing, point-to-point, dynamic, many-to-many

parallel, memory hierarchy, time dependent, multi-objective,. ..
Design: HHs, HNR, transit nodes,. .. wide open
Analysis: Correctness, per instance. big gap
Implementation: tuned, modular, thorough checking, visualization.
Experiments: Dijkstra ranks, worst case, cross method.. ..

Instances: Large real world road networks.

turn penalties, queries, updates, other network types
Algorithm Libraries: ???

Applications: Promising contacts, hiring. more should come.
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Gaps Between Theory & Practice

Theory — Practice
simple Vg appl. model complex
% . o
simple machine model — complex
complex algorithms FOR simple
complex AN data structures Al simple
worst case LMaX] | complexity measure| =& inputs
asympt. o(") efficiency 42% | constant factors




Sanders/Schultes: Route Planning o 65
Goals

L] bridge gaps between theory and practice
[ ] accelerate transfer of algorithmic results into applications

[ ] keep the advantages of theoretical treatment:
generality of solutions and

reliabiltly, predictabilty from performance guarantees
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Canonical Shortest Paths

S P . Set of shortest paths

S P canonical &

VP={(s,....d,....t",....tHhesp: (s —-thecser
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A Meaning of “Local”

[1 choose neighbourhood radius r(S)

e.g. distance to the H-closest node for a fixed parameter H

[] define neighbourhood of S:
AC(s) :=={veV |d(sv) <r(s)}

[ ] exampleforH =5
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Highway Network

A(S) A(t)

- Highwa -
/ ST \
Edge (U, V) belongs to highway network iff there are nodes Sand t s.t.

[J (u,V) is on the “canonical” shortest path from Sto t

and

[1 (u,V) is not entirely within A/ (S) or A (t)
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Canonical Shortest Paths

1N(SO) ) o () (V) 1
@@ || @0

1 2 (U )V 2

(a) Construction, started from .
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(b) Construction, started from Sj.
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(c) Result of the construction.
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Contraction

highway nodes and edges
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Contraction

bypass node
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Contraction

shortcuts
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Contraction

bypass node
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Contraction
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Contraction

enter
componen

component
(of bypassed no

des)

leaves
component
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Contraction

core
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Contraction

Which nodes should be bypassed?

Use some heuristic taking into account
[ ] the number of shortcuts that would be created and

[ ] the degree of the node.
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Fast Construction of the Highway Network

Look for HH-edges only in (modified) local SSSP search trees.

[ ] Nodes have state

active, passive, or mavericks.
[] spis active.

[ ] Node states are inherited

from parents in the SSSP tree.
[] abort condition(p) — P becomes passive.
[J d(s0,p) > f-r(Sp) — p becomes maverick.
[ ] all nodes maverick? — stop searching from passive nodes

[ ] all nodes passive or maverick? — stop

Result: superset of highway network
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Local QueriES(Highway Hierarchies Star, Europe)
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Simple Solutions

Example: 10000 X 10000 table,, G
in Western Europe &

[1 apply SSSP algorithm |§] times

~ 10000 X 10s~ one day
(e.g. DIJKSTRA)

[] apply P2P algorithm |§| x |T| times

1 ~ 100002 X 1ms = one day
(e.g. highway hierarchies™)

lrequires about 15 minutes preprocessing time
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Our Solution

Example: 10000 X 10000 table,
In Western Europe

[ many-to-many algorithm .
/2 one minute

based on highway hierarchies!

2

lrequires about 15 minutes preprocessing time
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Main ldea

[] instead of S{ x | T| bidirectional highway queries

L[]  perform S|+T unidirectional highway queries

Algorithm

[J maintain an |§ x |T | table D of tentative distances

(initialize all entries to )
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[] foreacht € T, perform backward search

store search space entries (t,u,d(u,t))
[ ] arrange search spaces: create a bucket for each U

[] for each S € S perform forward search
at each node U, scan all entries (t,u,d(u,t)) and
compute d(s,u) + d(u,t), update DS, t]
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Different Combinations

Europe
metric 0 DistTab  ALT both
preproc. time [min] 17 19 20 22
r total disk space [MB] 886 1273 1326 1714
me #settled nodes 1662 916 916 686 (176)
guery time [ms] 1.16 0.65 0.80 0.55 (0.18)
preproc. time [min] 47 47 50 49
dist total disk space [MB] 894 1506 1337 1948
N #settled nodes 10284 5067 3347 2138 (177)
guery time [ms] 8.21 4.89 3.16 1.95 (0.25)
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Neighbourhood Size

Preprocessing Time [min]

25
24
23
22

21 |

20
19
18
17
16
15

50

60 70 80 90

Memory Overhead per Node [byte]

140

=
N
o

=
o
o

(0]
o

(®))
o

N
(@)

N
o

1 1 1 1 (

40

50 60 70 80 90

Query Time [ms]

1.2

1.1

0.9

0.8

0.7

0.6

v

L1 1
40 50 60 70 80 90




Sanders/Schultes: Route Planning

Number of Levels

Memory Overhead per Node [byte]
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Contraction Rate

# Settled Nodes

2400
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