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Abstract We develop an external memory algorithm for computing mimmspanning
trees. The algorithm is considerably simpler than prevjoksown external
memory algorithms for this problem and needs a factor ofatléour less I/Os
for realistic inputs.

Our implementation indicates that this algorithm procesgaphs only lim-
ited by the disk capacity of most current machines in time woenthan a factor
2-5 of a good internal algorithm with sufficient memory space

Keywords:  secondary memory, random permutation, time forward psingsexternal pri-
ority queue, external graph algorithm

1 Introduction

The high capacity and low price of hard disks makes it indregyg attractive to
process huge data sets using cheap PC hardware. Howevkrgheaccess latency
of such mechanical devices requires the design of extereatary algorithms that
achieve high locality of access. A simple and successfulahfmd external memory
assumes a limited fast memory of sixeand a large memory that can be accessed in
consecutive blocks of sizB in one I/O step [2].

While simple algorithmic problems like sorting have verjigént external algo-
rithms, even simple graph problems are quite difficult taeadbr general graphs. For
example, depth first search has no efficient external solutiRefer to [14, Chap-
ters 3-5] for an overview. One of the most important excestis the minimum
spanning tree (MST) problem: Consider an undirected cdedegraphG with n
nodes andn edges. Edges have nonnegative weights. A minimum spanreeg t
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of G is a subset of edges with minimum total weight that forms asjpay tree of

G. If the graph is not connected, most algorithms are easifyptad to find amini-
mum spanning fore§MSF), i.e., a minimum spanning tree of each connected com-
ponent. The MST problem can be solveddfsort(m)) expected I/O steps [1] where
sort(N) = O(N/Blogy g N/B) denotes the number of I/O steps required for ex-
ternal sorting [2]. Section 3 gives more details on previoosk. We are not aware

of any implementations of external MST algorithms. One oeamay be that even
the simplest previous I/O efficient MST algorithms turn cube quite complicated

to implement. In the full paper we take a more detailed lookcsmhe implementation
details of previous algorithms and the resulting 1/0 ovedse

In this paper we describe the design, analysis, implementaand experimen-
tal evaluation of a very simple randomized algorithm foreemtl memory minimum
spanning trees.

We begin in Section 4 with a discussions&mi-externaalgorithms that are appli-
cable ifn = O(M), i.e., there is enough internal memory to store a constambieu
of words for each node. We choose a simple adaptation of latissidgorithm [1] that
needs only a single machine word for each node.

If n > M, all known external algorithms reduce the number of nodesadmyract-
ing MST edges: Ife = (u,v) € E is known to be an MST edge, we can remave
from the problem by outputting and identifyingu andv, e.g., by removing node
and renaming an edge of the fo(m w) to a new edgév, w). By remembering where
(v, w) came from, we can reconstruct the MST of the original grapmfthe MST
of the smaller graph. Our main algorithmic innovation is ayv&mple randomized
node reduction algorithm that removes one node at a time fhengraph. Section 5
develops this idea from an abstract algorithm over an eateealization using prior-
ity queues to a bucket based implementation that reducesaitoverhead. Besides
being simpler and faster than previous node reduction ilhgos, our algorithm needs
to store each edge only once, whereas previous algorittoresah edgdu, v} twice,
once agu,v) and once av, u).

The semiexternal algorithm from Section 4 and the node f@mludrom Sec-
tion 5 can be combined to an external MST algorithm with exge¢/O complexity
O(sort(m) [log(n/M)]). This seems to be inferior by a factor lofg(n /M) to the
best previous algorithms. However, in Section 2 we arguestiid/ < 16 for any
problem that runs on a “well balanced” machine. Henog(n/M) will be a small
constant. A comparison with previous algorithms in the paper indicates that for
all such inputs our algorithm uses at least a factor fourll€sthan all previous algo-
rithms. Moreover, ifn /M should really get large, our node reduction algorithm could
be used to speed up asymptotically better algorithms by #esioonstant factor. For
graphs that areparse under edge contractiamthe sense of [6] (e.g., planar graphs
or graphs with bounded tree width), our algorithm achiew@gretotically optimal
performance o®(sort(m)) I/Os.

In Section 7 we report about an implementation usisgxx1>,* an external imple-
mentation of the C++ STL library. Using a PC and 4 cheap digkesimplementation

Ihttp://www.mpi-sb.mpg.de/ rdementi/stxx1.html



can solve instances with up 832 nodes using abouys per edge. (About 246 per
edge when the semi-external algorithm suffices.) The bé&stial algorithm for very
sparse graphs — Kruskal’s algorithm — needs about 144 jaer edge for the largest
inputs our machine can handle.

2 “Realistic” Input Sizes

In the past few years, the cost ratio between main memorytadame amount
of hard disk space has consistently been between 100 andH&0i@e, in a balanced
system, the ratio between hard disk capacity and main mesipeywill be of the
same order. Let us assume a disk capacity28f\/. To represent an edge, algorithms
based on edge contraction need at least four words to desitrbincident nodes,
the edge weight, and the original identity of the edge. Hetlue largest graph we
may ever want to process on a balanced machine will vave 1281/ /4 = 32M.

If we further assume that the sparsest “interesting” grdpve abouln edges we
getn < 16M. A semiexternal implementation of Kruskal's algorithm dsene
machine word per node so that we need node reduction by & facad most 16.
This factor might be up to five times smaller (non-inplacdiagr edge{u, v} stored
as(u,v) and (v, u) in previous algorithms, five words per edge) or larger (sohaw
unbalanced machine, even more sparse graphs). Howevenitigexity of simple
external algorithm as ours only depends logarithmicallytasifactor so that the error
is not very big. We have also slightly “tuned” this discussia favor of previous
algorithms. For example, Boruvka'’s algorithm is most effiticompared to ours if
the reduction factor is a power of two.

3 Related Work

Boruvka’s algorithm [4, 17] was the first MST algorithm. lrastingly it is the
basis of most “advanced” MST algorithm. Conceptually, tly@athm is very simple:
Assume that all edge weights are different. IBaruvka phasgfind the lightest inci-
dent edge for each node. The é&bf these edges can be output as part of the MST.
Now contract these edges, i.e., find a representative nadmbfdh connected compo-
nent of (V, C) and rename an edde:, v} to {componentId(u), componentId(v)}.
This routine at least halves the number of nodes.

One Boruvka phase can be implemented externally to run @ort(m)) 1/0s
[1, 3]. To achieve a node reduction by a factor two, our atharineeds the same
asymptotic I1/0O complexity. However, a detailed analysishie full paper [8] shows
that our algorithm is both simpler and needs a factor aroond less I/Os then the
most efficient external realization of a Boruvka phase thatwould find [3].

Boruvka's original (internal memory) algorithm repeatedpplies Boruvka phases
until only a single node remains. In this paper, when we taibusa Boruvka’s algo-
rithm as an external algorithm, we assume that dhiog(n /M )) phases are executed
before switching to a semiexternal algorithm as describe®kiction 4. This choice of
base case should probably be considered as folklore.

Boruvka phases are also an ingredient of the asymptotiballyinternal algorithm
[10] that runs in expected linear time. This algorithm aidaially contains a compo-
nent for reducing the number of edges based on random sam@im external im-
plementation of this approach yields an I/O complexityXtort(m + n)) [1]. The



authors also discuss a deterministic, recursive, extémalementation of Kruskal's
algorithm that works irO (sort(m) + Zsort(n) log(n/M)) 1/Os. The base case is a
graph withO (M) edges. The full paper gives more details of these algorif8ins

Several deterministic external algorithms are descrilye@lrge, Brodal, and Toma
[3]. They start with an interesting alternative base casath& than reducing the
number of nodes until a semiexternal algorithm can be usegrniake the graph so
dense that the average node degre8.isThen an external implementation of the
Jarnik-Prim algorithm [9, 18] takes over that stores edges priority queue. The
algorithm needs one random 1I/O for each node but for very elgnaphs this 1/0s
step can be amortized ovér edge accesses. We have not used this base case since
for current disk technology (a block stores aro@hfledges) the semiexternal case is
reached much earlier than a case witiV’ > B. Although both our algorithm and
the external Jarnik-Prim algorithm use an edge priorityuguénhey are quite different.
Our algorithm is a node reduction that does little else thaarity queue accesses
whereas the external Jarnik-Prim algorithm is a base casseMimiting factor are
random node accesses. The two algorithms also use diffigrienities. In particular,
our algorithm can be modified to use only a single node indeth#® priority whereas
the external Jarnik-Prim algorithm needs to compare edgghiee This can translate
into a logarithmic factor difference in internal work. Theaim result in [3] is an
algorithm that reduces the number of nodes by a factorO(sort(m + n) loglogr)
I/Os rather thar©(sort(m + n) log r).

4 Semi-External Algorithms

The base case of our external MST algorithm iseaiexternahlgorithm that is
applicable once the number of nodes is reduce@d/). Abello, Buchsbaum, and
Westbrook [1] describe two such algorithms.

The simplest one is an adaptation of Kruskal's algorithnistFort the edges by
weight using external sorting. Then the edges are proceassexier of increasing
weight. Kruskal's algorithm maintains a minimum spanningekt (MSF)F' of the
edges seen so far. An edge, v} is putintoF if it joins two components irF' and
is discarded otherwise. The necessary operations can benrapted very efficiently
using a union-find data structure [24] if nodes are numbéred — 1.2 This data
structure can be implemented usingiaglearray of integers[0..n — 1]. If node:
is the representative of its component thgf) > n anda[i] — n is its merging rank.
Otherwises[i] stores an index of another node in the compenent. The psiotandes
in a component form a tree rooted at the component reprdaentdince the merging
depths reach at mostogn],> aw bit word can represent node indices in the range
0..2% — w. For example, using 32 bit words we can represent up to 4 294868
nodes.

The second algorithm needs even less 1/Os since it scandgles @ their original,
unsorted order. Using dynamic trees [23] it is still possitd maintain the MSH
of the edges seen so far using sp&de) and timeO(logn) per edge. However, the

2In this paper we use.j as a shorthand fofi, . .. ,5}.
3In this paperjog = stands follog, .



constant factors involved make this algorithm not very pisang for a practical imple-

mentation. Not only are dynamic tree operations much mos#ycthan operations on
a union find data structure, but also the savings in 1/0 voloamebe deceptive. For ex-
ample, the LEDA [13] implementation of dynamic trees neddsast ten times more
space for each node than an efficient implementation of tiendind data structure.

This means that our algorithm would ne2dsort(m) In 10 additional 1/0s to reduce
the number of nodes sufficiently to make the dynamic treerdhgo applicable.

A scanning based algorithm is still attractive for compgtMSTs of fairly dense
graphs where the number of nodes is small enough for direnteséernal treat-
ment. We have not included such graphs into the present stindg the 1/O as-
pects of finding MSTs for them are not very interesting. Hosreit is worth not-
ing thatanyinternal MST algorithm with running tim&(n, m) can be transformed
into a semiexternal MST algorithm that scans the edges omdéas internal over-
headO (2T (n,O(n))): The unsorted edges are processed in bat€hefsize© (n)
and we remember the MSF of the edges seen so far. In each iteration, we set
F := MSF(C U F). In practice, one would use Krukal’s algorithm or the Jarnik
Prim algorithm. A theoretically interesting observatisrihiat together with the linear
time randomized algorithm [10] we get a semiexternal MSToatgm with internal
overhead)(m + n).

5 Efficient Node Reduction

Similar to Boruvka’s algorithm, owsweeping algorithnis based on edge contrac-
tion. But the difference is that we identify only one MST edge time. The most
abstract form of the algorithm is very simple. In each itematwe remove a ran-
dom nodeu from the graph. We find the lightest edge, v} incident tou. By the
well known cut-property that underlies most MST algorith#ns v} must be an MST
edge. So, we outpdtu, v}, remove it fromE, andcontractit, i.e., all other edges
{u,w} incident tou are replaced by edgds, w}. If we store the original identity of
each edge, we can reconstruct the MST from the edges thatigmeto

THEOREM 1 The expected number of edges inspected by the abstractithlgor
until the number of nodes is reduceditois bounded bym In 7.

Proof: In the iteration wher nodes are left (note that= n in the first iteration), the
expected degree of a random node is at esti. Hence, the expected number of
edgesX;, inspected in iterationis at mos2m /i. By the linearity of expectation, the
total expected number of edges processed is

2m 1 1 1
E : = ) — = ) —_ — —
2 EX)< 3, T=wm 3, g=wm| 3 g D
n'<i<n n'<i<n n'/<i<n 1<i<n 1<i<n’
=2m(H, — Hy) <2m(nn —Inn') = 2mIn E/
n
whereH,, = Inn+0.577 - - -+ O(1/n) is then-th harmonic number. |

As a first step towards an external implementation, we reptandom selection
of nodes bysweepinghe nodes in an order fixed in advance. We assume that nodes



ExternalPriorityQueue?

foreach (e = (u,v),¢) € E do Q.insert(((w(u), 7(v)), c,e)) ——rename
currentNode :=-1 ——node currently being removed
i:=n ——number of remaining nodes

while i > n' do
((u,v), ¢, e01d) := Q.deleteMin ()

if u #currentNodehen ——lightest edge out of a new node
currentNode = ——nodeu is removed
7:__
relinkTo :=v
outputegiq ——MST edge

elsif v # relinkTo then Q.insert((v, relinkTo), ¢, eq1q)——relink non-self-loops

Figure 1. An external implementation of the sweeping algorithm usirggiority queue.

are numbered..n — 1. We first rename the node indices using a random permutation
m:0.n —1 — 0.n — 1 and then remove renamed nodes in the order1, n — 2,

!
., n'.

THEOREM 2 The sweeping algorithm is equivalent to the abstract nodecton
algorithm.

Proof: In each iteration, the abstract algorithm can be viewed asfigne value of
a random permutation of node indices. It does that by chgasie of the remaining
nodes uniformly at random. This exactly emulates the masinconly used algorithm
for generating uniformly distributed random permutatifir#y. ]

Note that the sweeping algorithm produces a graph with nudiees)..n’ — 1, i.e.,
it can be directly used as input to our semiexternal Kruskgdrithm from Section 4.

5.1 A Priority Queue Implementation

There is a very simple external realization of the sweepiggrahm based on
priority queues of edges. Edges are stored in the f(nmo), ¢, eo1a) Where (u,v)
is the edge in the current graphis the edge weight, ane,4 identifies the edge in
the original graph. The queue normalizes edge®) in such a way that > v. We
define a priority ordef(u,v), ¢, eqa) < ((v',v"), ', elq) iff w > v’ oru = u' and
¢ < ¢'. With these conventions in place, the algorithm can be desgrusing the
simple pseudocode in Figure 1.df4 is just an edge identifier, e.g. a position in the
input, an additional sorting step at the end can extract ¢theabMST edges. I&,q
stores both incident vertices, the MST edge and its weighbesoutput directly.

THEOREM 3 The sweeping algorithm can be implemented to work with
O(Jm'/m] sort(m)) I/Os if it processesn’ edges during its execution. It processes
the same number of edges as the abstract algorithm from €hedr



Proof: Renaming using a random permutation can be done uSigrt(n + m))
I/Os (e.g. [19])* The algorithm performs onlyn + m' insertions and the queue
size never exceeds. External priority queues can be implemented to do thisgisin
%’"'sort(m) = O([m'/m] sort(m)) I/Os [5]. Outputting the MST edges takes
O(n/B) 1/Os. ]

5.2 A Bucket Implementation

The priority queue implementation unnecessarily sortgtiges adjacent to a node
where we really only care about the smallest edge coming fivstnow describe an
implementation of the sweeping algorithm that has intenak linear in the total I/O
volume. We first make a few simplifying assumptions to gesetdo our implemen-
tation.

The representation of edges and the renaming of nodes werkstae priority
gueue implementation. As before, in iteratignnodei is removed by outputting
the lightest edge incident to it and relinking all the othdges. We split the node
rangen’..n — 1l into k¥ = O(M/B) equal sizedcexternal bucketsi.e., subranges of
size(n — n')/k and we define a special external bucket for the rahgé — 1. An
edge(u,v) with u > v is always stored in the bucket far We assume that the
current bucket (that containy completely fits into main memory. The other buckets
are stored externally with only a write buffer block to aceonodate recently relinked
edges.

Wheni reaches a new external bucket, it is distributeéhternal buckets— one
for each node in the external bucket. The internal bucket iscanned twice. Once
for finding the lightest edge and once for relinking. Relidleziges destined for the
current external bucket are immediately put into the appat@internal bucket. The
remaining edges are put into the write buffer of their exaébucket. Write buffers
are flushed to disk when they become full.

When onlyn' nodes are left, the bucket for ran@en’ — 1 is used as input for the
semi-external Kruskal algorithm from Section 4.

A more general implementation needs a special case fonitbuckets that cor-
respond to very high degree nodes. However, although thigatat complicates the
implementation, it will not have a negative effect on rumptime. On the contrary,
nodes with very high degree can be moved to the bucket foraimexternal case di-
rectly. These nodes can be assigned the numbekd, n’ + 2, ... without danger of
confusing them with nodes with the same index in other bsckiet accomodate these
additional nodes in the semiexternal casehas to be reduced by at mas{1//B)
since form = O(M?/B) there can be at mo&2(M /B) nodes with degre@ (A1).

If the overall number of edges gets so large that even angwsize external bucket
does not fit into internal memory, one has to switch to meitiel distribution schemes.
However, the added complexity for this is needed even fdirgpso that we remain
I/O optimal and work optimal.

“4In Appendix 1 we give an algorithm that produces pseudomangermutations directly without additional
I/Os.



5.3 Parallel Edges and Sparse Graphs

The basic sweeping algorithm described above can produeigda@dges by re-
linking. These edges remain parallel during subsequeinkiay operations. Parallel
edges can be removed relatively easily. When scanning tamad bucket for node
i, the edgegi, v) are put into a hash table usingas a key. The corresponding table
entry only keeps the lightest edge connectimgdy seen so far.

This leads to an asymptotic improvement for planar grapteplss with bounded
tree width and other classes of graphs that remain sparss adde contraction:

THEOREM 4 Consider a graph that ha®(n — i) edges after any sequence iof
edge contractions. Then the sweeping algorithm with refnoivparallel edges runs
usingO(sort(n)) 1/Os.

Proof: We charge the cost for inspecting (and immediately disog)da parallel
edge to the relinking operation that created the parallgéed his demonstrates that
the algorithm performs only a constant factor more work tharalgorithm where
parallel edges are not even generated. Since the graphisespaler edge contraction,
O(sort(n)) /Os suffice to reduce the number of nodesl edgedy a factor at least
two. Hence, the I/O steps needed for the algorithm obey therrencelV (n) <
O(sort(n))+W (n/2). This recurrence has the solutiin(n) = O(sort(n)). ]

6 Implementation

Our external implementation makes extensive usesakx1>, an external imple-
mentation of the C++ standard template library STL. The s&ternal Kruskal and the
priority queue based sweeping algorithm become almosaktising external sorting
[7] and external priority queues [20]. The bucket based amantation uses external
stacks to represent external buckets. The stacks havela pimgte output buffer and
they share a common pool of additional output buffers theitifates overlapping of
output and internal computation. When a stack is switcha@ading, it is assigned
additional private buffers to facilitate prefetching.

The internal aspects of the bucket implementation are alsciad. In particular,
we need a representation of internal buckets that is spdicéert, cache efficient,
and can grow adaptively. Therefore, internal buckets greesented as linked lists of
small blocks that can hold several edges each. Edges im@itenckets do not store
their source node because this information is redundant.

Our implementation deviates in three aspects from the pusvilescription. Edges
are stored as 5-tuples of 32 bit integers and store both émdpaf the original edge
directly. This saves an additional sorting phase at the enddllecting missing in-
formation on the MST edges and it allows us to process more2teedges without
resorting to cumbersome packed representations with 4@lg#-ids. Our implemen-
tation of the Union-Find data structure uses a separatefbythe merging rank. We
have not implemented the special case treatment for nodesrptigh degree out-
lined in Section 5.2 because this case does not occur forrdghdgamilies studied
in [15]. We saw also no reason to invent or find such graph fam#ince with the
special case treatment we could expect them to be easielvitban other graphs.



In any case, our priority queue based implementation cavésscase and performs
reasonably well for a single disk.

A more detailed account of the implementation is given in] [2id on the web
http://www.dominik-schultes.de/emmst/.

7 Experiments

Our starting point for designing experiments was the studivbret and Shapiro
[15]. We have adopted the instance families fandomgraphs with random edge
weights and randongeometricgraphs where random points in the unit square are
connected to theid closest neighbors. In order to obtain a simple family of ptan
graphs, we have addeptid graphs with random edge weights where the nodes are
arranged in a grid and are connected to their (up to) fourctimeighbors. We have
not considered the remaining instance families in [15] heedhey define rather dense
graphs that would be easy to handle semiexternally or treeg@ecifically designed to
fool particular algorithms or heuristics. We have chosengarameters of the graphs
so thatm is betweer2n and8n. Considerably denser graphs would be either solvable
semiexternally or too big for our machine.

The experiments have been performed on a low cost PC-samgamd 3000 Euro
in July 2002) with two 2 GHz Intel Xeon processors, 1 GByte RAMI4 x 80 GByte
disks (IBM 120GXP) that are connected to the machine in ddrmtk-free way (see
[7] for more details on the hardware). This machine runs kiR4.20 using the XFS
file system. Swapping was disabled. All programs were cadpilith g++ version
3.2 and optimization levet06. The total computer time spend for the experiments
was about 25 days producing a total I/0O volume of severalndzeabytes.

Figure 2 summarizes the results for the bucket implemeamtatiTables with de-
tailed numerical data can be found in Appendix 2. The infamplementations were
provided by Irit Katriel [11]. The curves only show the intet results for random
graphs — at least Kruskal’s algorithm shows very similardxédr for the other graph
classes. Our implementation can handle up to 20 million edgeuskal’s algorithm
is best for very sparse grapha (< 4n) whereas the Jarnik-Prim algorithm (with a fast
implementation of pairing heaps) is fastest for denserhgdyut requires more mem-
ory. Forn < 160 000 000, we can run the semiexternal algorithm and getuéra
times within a factor of two of the internal algorithtriThe curves are almost flat and
very similar for all three graph families. This is not astring since Kruskal's algo-
rithm is not very dependent on the structure of the graphoBdyl60 000 000 nodes,
the full external algorithm is needed. This immediatelytsas another factor of two
in execution time: We have additional costs for random rangmmode reduction, and
a blowup of the size of an edge from 12 bytes to 20 bytes (foamead nodes). For
random graphs, the execution time keeps growing wjth/ as predicted by the upper
bound from Theorem 1.

5Both the internal and the semiexternal algorithm have a rurob possibilities for further tuning (e.g.,
using integer sorting or a better external sorter for sniathents). But none of these measures is likely to
yield more than a factor of 2.
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The behavior for grid graphs is much better than predicteBigorem 4. Itis inter-
esting that similar effects can be observed for geometeplgs. This is an indication
that it is worth removing parallel edges for many nonplamaps® Interestingly, the
time per edgalecreasesvith m for grid graphs and geometric graphs. The reason
is that the time for the semiexternal base case does notisegroportionally to the
number of input edges. For example§ - 108 edges of a grid graph wité40 - 10°
nodes survive the node reduction, &8 - 10% edges of a grid graph with twice the
number of edges.

Another observation is that fan = 2560 -10° and random or geometric graphs we
get the worst time per edge for ~ 4n. Form = 8n, we do not need to run the node
reduction very long. Fom =~ 2n we process less edges than predicted by Theorem 1
even for random graphs simply because one MST edge is renfiovedch node.

We have made a few runs with even larger graphs. The largestas a grid graph
with n = 232 which takes 96GByte just to represent the input. Even thaplgthat
required an 1/O volume of about 830 GByte was processed ints8fo40min.

The following small table shows running time jirs per edge for random graphs
with n = 320-10% andm = 640 - 105 where we varied the number of disks and where
we compare the priority queue implementation with the btickplementation:

| 1disk 4 disks
bucket implementation 6.7 4.3
priority queue implementation 11.0 8.9

Since the speedup for the bucket algorithm after quadrgplie number of disks is
only 1.56, one can conclude that even with a single disk aadrternally efficient
bucket algorithm, the computation is not I/O-bound. Thiplains why the bucket
implementation brings a considerable improvement oveptlogity queue implemen-
tation. Considering its simplicity, the priority queue ilmmentation is still interesting
since it also achieves reasonable performance for a sifgle d

8 Conclusions

We have demonstrated that massive minimum spanning trdxepns filling sev-
eral hard disks can be solved “overnight” on a PC. The keyrahguic ingredient
for this result is the sweeping paradigm that yields simptat faster algorithms than
previous approaches. This paradigm is also useful for gifelems like connected
components, list ranking, tree rooting,. [22]. The efficient and relatively simple
implementation profits from thestxx1> library that implements external sorting,
priority queues, and other basic data structures in an@ffigiay using parallel disks,
overlapping of /0 and computation, DMA directly to usereea. .

An interesting challenge for the future is whether we caneselven larger MST
problems using parallel processors and external memostlieg Here, the sweeping
paradigm seems to break down and other simplifications aftiegi algorithms are
sought for.

Svery few parallel edges are generated for random graphsefdre, switching off duplicate removal gives
about 13 % speedup for random graphs compared to the nunibens g
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Appendix

1 Fast Pseudo Random Permutations

For renaming nodes, we need a (pseudo)random permutatiof.n — 1 — 0..n — 1.
Assume for now that: is a square so that we can represent a nods a pair(a, b) with
i = a + by/n. Our permutations are constructed fréistelpermutations, i.e., permutations
of the formm((a, b)) = (b,a + f(b) mod /n) for some random mapping: 0.../n — 1 —
0.../n — 1. Sincey/n is small, we can afford to implemerftusing a lookup table filled with
random elements. For example, for= 2%? the lookup table forf would require only 128
KByte. It is known that a permutatiofi(z) = 7 (mg (s (m(2)))) build by chaining four
Feistel permutations is “pseudorandom” in a sense usefudrfgtography. The same holds if
the innermost and outermost permutation is replaced by en swnpler permutation [16]. In
our implementation we use just two stages of Feistel-Patiauts. It is an interesting question
what provable performance guarantees for the sweep digoot other algorithmic problems
can be given for such permutations.

A permutationt’ on0.. [/n]” — 1 can be transformed to a permutatioron 0..n — 1 by
iteratively applyingr’ until a value belown is obtained. Since’ is a permutation, this process
must eventually terminate. #' is random, the expected number of iterations is closedad
it is unlikely that more than three iterations are necesgargnyinput.



2 Detailed Measurement Data

Table A.1. (Semi-)External test casesi: nodes,m: edges;t: elapsed timep: processed
edgesF(p): expected value gf according to Theorem %, duplicates removed.

| type | n/10° | m/10° | t[s] | t/m[us] | p/10° | p/E(p) | d/m |
grid 40 80 177 2.21
grid 80 160 362 2.27
grid 160 320 738 2.31
grid 320 640 | 2535 3.96 750 85% | 4%
grid 640 1280 4712 3.68 | 2492 70% | 13%
grid 1280| 2560| 9056 3.54 | 6167 58% | 22 %
random 40 80 185 2.32
random 80 160 388 2.42
random 160 320 813 2.54
random 320 640 | 2773 4.33 766 86% | 0%
random 640 1280| 6098 476 | 2752 78% | 0%
random 1280 | 2560 14202 5,55 | 7676 2% | 0%
random 20 80 155 1.94
random 40 160 318 1.99
random 80 320 676 2.11
random 160 640 | 1427 2.23
random 320 1280 | 5889 460 | 1651 9% | 0%
random 640 | 2560 | 14248 5.57 | 6284 89% | 0%
random 10 80 142 1.77
random 20 160 286 1.79
random 40 320 591 1.85
random 80 640 | 1242 1.94
random 160 1280 | 2627 2.05
random 320 | 2560 | 12370 4.83 | 3426 97% | 0%
geometric 40 75 183 2.45
geometric 80 149 377 2.53
geometric 160 298 787 2.64
geometric 320 506 | 2175 3.65 644 8% | 7%
geometric 640 1190| 3797 3.18| 1949 50% | 13%
geometric 20 71 148 2.09
geometric 40 141 300 2.13
geometric 80 282 627 2.22
geometric 160 564 | 1333 2.36
geometric 320 1130| 4126 3.66 | 1275 82% | 18%
geometric 10 68 124 1.84
geometric 20 135 246 1.82
geometric 40 270 511 1.89
geometric 80 540 | 1067 1.98
geometric 160 1080| 2209 2.04




