
On the Practical Use of Bead Sort

Dominik Schultes

25. March 2004

Abstract

We discuss some issues regarding the practical use of Bead
Sort [ACD02]. We do not want to query the basic idea of
sorting using a natural algorithm nor the interesting the-
oretical results, but we concentrate on the aspects that
probably prevent that Bead Sort will be very successful in
practice. These aspects contain the time and space com-
plexity and the problem of sorting keys that are assigned
to data records. Particularly, we want to compare Bead
Sort with well known sorting algorithms, especially with
Distribution Counting.

1 Introduction

In the Bead Sort algorithm [ACD02] each integer x is rep-
resented by x beads that are arranged in a horizontal row
on vertical rods. When the input is given in this way, the
beads fall down until they hit the bottom or another bead
that already rests. If each row with x beads is again in-
terpreted as the number x, the rows represent the sorted
data after all beads have reached their final position.

In Section 3, we will compare Bead Sort with the
well known Merge Sort [Sed88] and Distribution Count-
ing [Sed88] algorithms.

2 Sorting Keys Linked to Data
Records

Practically, in every application not only numbers have to
be sorted, but keys that are linked to data records. For
instance, in a database, whole records consisting of first
name, surname and address are sorted by surname. An-
other example is sorting as a part of another algorithm,
e.g., Kruskal’s algorithm to compute a minimum spanning
tree in a graph. The first step is sorting the edges by
weight, but we are not only interested in the sorted weights,
on the contrary, we do not care for the actual weights, but
we just want to know the ascending order of the edges.

Hence, it is very important in practice to ensure that the
links between the keys and the corresponding data are not
destroyed by sorting.

Unfortunately, it is in the nature of Bead Sort to lose
this information. One possibility to bypass this problem
is to use a hash table. If all keys are distinct, you can
store a link to the data in the hash table according to the
key. If there are multiple records with the same key, you
can use a linked list at the corresponding position in the
hash table. After filling the hash table you can apply Bead
Sort and when the result is read, you can access the hash
table in order to retrieve the data that is linked to the
sorted keys. But, of course, then the whole procedure is
no natural algorithm anymore.

3 Time Complexity

Depending on the point of view, [ACD02] and [Aru04]
present different time complexities for Bead Sort. One
point of view is the interpretation of falling beads that
are accelerated by gravity and therefore need a time that
depends only on the square root of the height. We consider
this interpretation as very fascinating because not only the
lower bound for comparison based sorting of O(n log n) is
beaten, but also O(n). However, we doubt that this is use-
ful in practice as there is already a lower bound of O(n)
for the input. Thus, the time we need to sort n numbers
depends on O(n) anyway.

Let us compare on a conventional machine a simple se-
quential implementation of Bead Sort with Merge Sort and
with Distribution Counting. We denote the number of keys
with n and the biggest key with m. A sequential implemen-
tation of Bead Sort has the time complexity O(n·m), Merge
Sort O(n log n), and Distribution Counting O(n + m).

For a small m, Bead Sort can beat Merge Sort, but
for bigger keys (i.e., a larger m) and a reasonable num-
ber of keys, Bead Sort gets very slow in comparison to
Merge Sort. Theoretically, Bead Sort is asymptotically
faster than Merge Sort for any fixed m, but in practice,
the memory is exceeded before n is so big that Bead Sort

1

can overtake Merge Sort.

Since O(n + m) is always better than O(n · m), Dis-
tribution Counting is throughout faster than Bead Sort.
Figure 1 and 2 represent the results of the measurements
that we have performed with the help of a C++ program
(see Appendix A). The source code and the results of the
measurements are also available at [Sch04].

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

t [
s]

n / 1 000 000

Bead Sort
Distribution Counting

Merge Sort

Figure 1: Comparison between Bead Sort, Distribution
Counting and Merge Sort.
The number of keys n varies between 500 000 and 10 000 000

with a step size of 500 000, no key is bigger than a fixed m =

100. The measurements are done on a Intel Centrino 1.5 GHz

using Linux 2.4.19 and the g++ compiler 3.2 with optimization

level 6 (-O6).

Of course, Bead Sort has not been designed with a sim-
ple sequential implementation on a conventional machine
in mind, but it should take advantage of parallelization.
In [ACD02] three different implementations are introduced
basing on analog hardware, on a cellular automaton resp.
on digital hardware. These implementations have in com-
mon that they reduce the time complexity by paralleliza-
tion from O(n · m) to O(n). However, we should keep in
mind that Distribution Counting has – even without par-
allelization – a quite similar complexity (especially with
the assumption that m ≤ n). Furthermore, we have to
admit that the parallelization of Bead Sort does not come
for free, which leads to the next issue.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

t [
s]

m

Bead Sort
Distribution Counting

Merge Sort

Figure 2: Comparison between Bead Sort, Distribution
Counting and Merge Sort.
The number of keys n is fixed to 5 000 000, the maximum key

m varies between 10 and 1000 with a step size of 10. Note that

Distribution Counting is so fast that the corresponding line is

hardly visible. Obviously, the value for Bead Sort for m = 560

is a measurement error.

4 Space Complexity

The space complexity of Bead Sort depends on m and, in
contrast to the time complexity, this cannot be improved.
This means that in general the required space grows expo-
nentially with the input length – regardless of the chosen
implementation. Hence, Bead Sort can only be used for an
input with a small, fixed m. (This restriction applies to
Distribution Counting as well.)

5 Conclusion

While Bead Sort is a fascinating natural algorithm with in-
teresting theoretical aspects, it probably will not succeed
in practice. Due to its space complexity it cannot be ap-
plied to input data with large keys and for small keys, the
linear time Distribution Counting algorithm is very com-
petitive. Furthermore, the natural Bead Sort algorithm
tends to destroy the links between keys and data records.

References

[ACD02] J. J. Arulanandham, C. S. Calude, and M. J.
Dinneen. Bead-sort: A natural sorting algo-

2

rithm. Bulletin of the European Association for
Theoretical Computer Science, 76:153–162, 2002.

[Aru04] J. J. Arulanandham. Bead-sort – a natural algo-
rithm for sorting. http://www.cs.auckland.ac.nz
/∼cristian/umc/bead sort.zip, March 2004.

[Sch04] Dominik Schultes. A comparison between
bead sort, distribution counting and merge
sort. http://www-user.rhrk.uni-kl.de/∼dschult/
umc/asg2/, March 2004.

[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, 2nd
edition, 1988.

A Source Code

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ A Comparison between BEAD SORT, DISTRIBUTION COUNTING

∗ and MERGE SORT.

∗ by Dominik Schultes

∗ 25. March 2004

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <sys/time.h>

#include <iostream>

#include <fstream>

#include <vector>

using namespace std;

typedef vector<int> my vector;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ This section contains methods to measure the used time

∗ and to log the measured values.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
bool log n = true;

double last timestamp;

/∗∗ Returns a current timestamp. ∗/
inline double timestamp()

{
struct timeval tp;

gettimeofday (&tp, NULL);

return double (tp.tv sec) + tp.tv usec / 1000000.;

}

/∗∗ Starts the time measurement. ∗/
inline void start timer() {

last timestamp = timestamp();

}

/∗∗ Stops the time measurement and returns the elapsed time. ∗/
inline double stop timer() {

return timestamp() - last timestamp;

}

/∗∗
Writes the given time to the given output stream.

Depending on the global variable log n either n or m

is used as variable that the given time is assigned to.

∗/
inline void logTime(int m, int n, double t, ostream &out) {

if (log n) out << n; else out << m;

out << " " << t << endl;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ This section contains methods to generate the input

∗ randomly and to check the output if it is really sorted

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗
Generates n random numbers between 1 and m and inserts them

to the given vector a.

∗/
void generateData(my vector &a, int n, int m) {

for (int i=0; i<n; i++) {
a.push back((int)(rand() / (double)(RAND MAX+1.0) ∗ m)+1);

}
}

/∗∗
Checks if the given vector a is sorted in descending order.

Writes a message to standard out.

∗/
void checkData(my vector &a) {

for (int i=1; i<a.size(); i++) {
if (a[i] > a[i-1]) {

cout << "Check FAILED !" << endl << (i-1) << ": "

<< a[i-1] << endl << i << ": " << a[i] << endl;

return;

}
}
cout << "Check passed. Data is sorted." << endl;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ This section contains the actual sorting methods:

∗ Bead Sort, Distribution Counting and Merge Sort

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗ A simple implementation of Bead Sort. ∗/
void beadSort(my vector &a, int m, ostream &out) {

// initialize

int n = a.size();

int ∗level count = new int[n+1];

int ∗rod count = new int[m+1];

for (int i=1; i<=n; i++) level count[i] = 0;

for (int i=1; i<=m; i++) rod count[i] = 0;

// sort

start timer();

for (int i=0; i<n; i++) {
for (int j=1; j<=a[i]; j++) {

++level count[++rod count[j]];

3

}
}

logTime(m, n, stop timer(), out);

// write sorted data back and clean up

a.clear();

for (int i=1; i<=n; i++) a.push back(level count[i]);

delete level count;

delete rod count;

}

/∗∗ A simple implementation of Distribution Counting. ∗/
void distributionCounting(my vector &a, int m, ostream &out) {

// initialize

int n = a.size();

int ∗result = new int[n];

int ∗buckets = new int[m+1];

for (int i=1; i<=m; i++) buckets[i] = 0;

// sort

start timer();

for (int i=0; i<n; i++) buckets[a[i]]++;

for (int i=m-1; i>=1; i--) buckets[i] += buckets[i+1];

for (int i=0; i<n; i++) result[--buckets[a[i]]] = a[i];

logTime(m, n, stop timer(), out);

// write sorted data back and clean up

a.clear();

for (int i=0; i<n; i++) a.push back(result[i]);

delete result;

delete buckets;

}

/∗∗ A recursive implementation of Merge Sort. ∗/
void mergeSortRecursion(my vector &a, int l, int r) {

// base cases

if (l == r) return;

if (r - l == 1) {
if (a[r] > a[l]) {

int tmp = a[l]; a[l] = a[r]; a[r] = tmp;

}
return;

}

// recursive calls

int m = (r-l)/2 + l;

mergeSortRecursion(a,l,m);

mergeSortRecursion(a,m+1,r);

// merge

my vector b;

b.reserve(r-l+1);

int j = l; int k = m+1;

for (int i=l; i<=r; i++) {
if ((j > m) || ((k <= r) && (a[j] < a[k])))

b.push back(a[k++]);

else

b.push back(a[j++]);

}

// write sorted data back

j = 0;

for (int i=l; i<=r; i++) a[i] = b[j++];

}

/∗∗
Invokes the recursive Merge Sort with the appropriate

arguments.

∗/
void mergeSort(my vector &a, int m, ostream &out) {

start timer();

mergeSortRecursion(a, 0, a.size()-1);

logTime(m, a.size(), stop timer(), out);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ This section contains the main method and methods that

∗ control the test runs.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗
Performs several test runs. The number of keys n varies between

500 000 and 10 000 000 with a step size of 500 000. No key is

bigger than a fixed m = 100.

∗/
void measurement1() {

ofstream outFileDistrCount("distrCount1.dat");

ofstream outFileBead("beadSort1.dat");

ofstream outFileMerge("mergeSort1.dat");

int m = 100;

log n = true;

int step = 500000;

for (int n=step; n<=20∗step; n+=step) {
cout << n << endl;

// generate the data

my vector ∗data1 = new my vector;

generateData(∗data1, n, m);

my vector ∗data2 = new my vector(∗data1);
my vector ∗data3 = new my vector(∗data1);

// sort

distributionCounting(∗data1,m,outFileDistrCount);
beadSort(∗data2,m,outFileBead);

mergeSort(∗data3,m,outFileMerge);

// check the results and clean up

assert(∗data1 == ∗data2);
assert(∗data1 == ∗data3);

checkData(∗data1);
checkData(∗data2);
checkData(∗data3);

delete data1;

delete data2;

delete data3;

4

}
}

/∗∗
Performs several test runs. The number of keys n is fixed

to 5 000 000. The maximum key m varies between 10 and 1000

with a step size of 10.

∗/
void measurement2() {

ofstream outFileDistrCount("distrCount2.dat");

ofstream outFileBead("beadSort2.dat");

ofstream outFileMerge("mergeSort2.dat");

int n = 5000000;

log n = false;

for (int m=10; m<=1000; m+=10) {
cout << m << endl;

// generate the data

my vector ∗data1 = new my vector;

generateData(∗data1, n, m);

my vector ∗data2 = new my vector(∗data1);
my vector ∗data3 = new my vector(∗data1);

// sort

distributionCounting(∗data1,m,outFileDistrCount);
beadSort(∗data2,m,outFileBead);

mergeSort(∗data3,m,outFileMerge);

// check the results and clean up

assert(∗data1 == ∗data2);
assert(∗data1 == ∗data3);

checkData(∗data1);
checkData(∗data2);
checkData(∗data3);

delete data1;

delete data2;

delete data3;

}
}

/∗∗ The main method. ∗/
int main() {

measurement1();

measurement2();

return 0;

}

5

