
A Simulation of a Liquid-Based Natural Algorithm for Finding the

Average of n Integers Using a Cellular Automaton

Dominik Schultes

8. April 2004

Abstract

We use a Cellular Automaton (CA) to simulate a liquid-
based natural algorithm for finding the average of n in-
tegers. A modeling of the problem in terms of a CA is
presented, some properties are specified that have to be
fulfilled by the CA in order to be able to solve the problem
and, finally, one concrete set of rules is derived. Appendix
A contains one test run and Appendix B the source code
of a C++ program [Sch04] that implements the described
CA.

1 Introduction

In order to compute the average of n numbers, we can use
a liquid-based natural algorithm [Aru04]. Each number
is represented by a corresponding water level in a cylin-
der, where each cylinder has the same diameter. When
the lower parts of all cylinders are connected, the water is
distributed to all cylinders equally because of the equal at-
mospheric pressure so that the water level of all cylinders
represents the average value.

We want to use a Cellular Automaton (CA) [Wol86] to
simulate this algorithm. In order to do so, we have to
restrict the input to integers as we can only represent dis-
crete values. Let m be the biggest number of the n inte-
gers. Then, we can use a CA with n columns and m rows
to simulate the algorithm. Each column corresponds to
one cylinder resp. to one number of the input. Initially,
for each column x all cells 1 ≤ y ≤ ax are filled, where ax

is the x-th number of the input. The remaining cells are
empty.

The CA should have the following properties:

1. In each step, the number of filled cells does not change
because we want to simulate a closed system where
nothing is added and nothing is taken away.

2. After a finite amount of steps, the automaton reaches
a state that represents the correct result and all the
following states represent the correct result as well.
If the average of the n integers is an integer k, there
is only one state that represents the correct result,
namely, the state where the rows from 1 to k are filled
completely and all other cells are empty. If the average

is a rational number r, k < r < k + 1, a correct state
consists of the k completely filled rows and exactly j
filled cells in the row k + 1, where r = k + j/n, 1 ≤
j < n.

3. After a finite amount of steps, the automaton reaches
a final state and stays in this state forever.

The Properties 1 and 2 are absolutely required, while the
Property 3 is helpful in order to be able to decide if a
correct state is reached: Property 3 guarantees that the
algorithm terminates after a finite amount of steps, i.e., the
state does not change anymore, and together with Property
2 we know that this final state represents a correct solution.

2 Basic Rules

Basing on the above mentioned general properties, there
are several sets of rules that lead to a CA that solves the
problem correctly. We want to present one simple set of
rules that achieves that goal.

1. If a filled cell is above an empty cell, both cells are
swapped.

2. If a filled cell is left above an empty cell, both cells
are swapped.

3. If a filled cell is right above an empty cell, both cells
are swapped.

The order of these rules corresponds with the arbitrarily
chosen priority, i.e., if all three conditions are fulfilled by a
filled cell, it changes the place with the empty cell below;
if there is a filled cell above another filled cell whose hor-
izontal neighbours are empty, the former filled cell “goes”
down to the right (Rule 2).

Unfortunately, these rules can easily cause conflicts, i.e.,
up to three filled cells want to change places with the same
empty cell. This has to be avoided in order to obey Prop-
erty 1. It is possible to prevent these conflicts in a conven-
tional CA by introducing additional states and by using a
bigger neighbourhood so that cells in a square with edges of
length five influence the next state of a cell instead of just
the cells in a square with edges of length three, where only
direct neighbours are considered. However, the description

1

of such an automaton would get quite complex. Therefore,
we prefer to introduce sub-steps, which leads to a simple
description: Each rule is encapsulated in a sub-step. Dur-
ing one step all sub-steps are executed in the order that
corresponds with the priority of the rule. If the state of one
cell changes during a sub-step, this cell is specially marked
so that it is skipped in the following sub-steps. After all
sub-steps have been performed, the markers are removed
for the next step. Due to this partition of a step, we do
not have to explicitly handle collisions.

3 Advanced Rules

The three rules from Section 2 represent the fact that
the water is pressed downwards by the atmospheric pres-
sure, but they are not sufficient. For instance, nothing
would happen if the input was 1, 2, 3, 4, 5. Hence, we need
some additional rules so that the water first flows side-
wards in order to be able to flow downwards. On prin-
ciple, a CA makes only local decisions, but here we need
a kind of global decision. Let us compare the instances
0, 1, 1, 2, 1, 1, 1 and 1, 1, 1, 2, 1, 1, 0. In the former, the 2
should go to the left in order to fill the 0; in the later,
the 2 should go to the right. As we cannot make a global
decision, we just choose one direction, say right, and the
filled cell changes its place with an empty cell to its right
as long as possible. Then the direction is inverted so that
we can be sure that a “hole”, i.e., a possibility to move
downwards, is discovered (if there is any). But, we have to
remember what we have already seen. Otherwise, the filled
cell cannot know if it should move right or if it has already
reached the right border so that it has to move left now.
Hence, we replace the state filled by two states right and
left. However, we need even more states. If a right cell hits
something on its right, it turns back and goes to the left.
But, we have to distinguish between two cases. The first
case is that the right border has been touched or that the
obstruction is a filled cell that as already touched the right
border. In this case, we know that there is no hole to the
right of this point and we store this knowledge by chang-
ing to the state left trb for “going left, already touched the
right boundary”. The second case is that the obstruction
is just an arbitrary filled cell. In this case, we only switch
to the state left as we cannot be sure that there is no hole
to the right of the current point. When a left cell reaches
the left border, its state switches to right tlb.

Thus, we add the following rules:

4. • If a cell that is in the state right or right tlb is
left to an empty cell, both cells are swapped.

• If a right cell is left to a non-empty cell, it adopts
the state of the other cell.

• If a right cell is left to the right boundary, the
state of the cell is changed to left trb.

5. • If a cell that is in the state left or left trb is right
to an empty cell, both cells are swapped.

• If a left cell is right to a non-empty cell, it adopts
the state of the other cell.

• If a left cell is right to the left boundary, the state
of the cell is changed to right tlb.

• If a left trb cell is right to the left boundary or
to a right tlb cell, the state of the cell is changed
to right tlb.

The Rules 4 and 5 form a fourth and fifth sub-step. The
subdivision of one step into five sub-steps still ensures that
Property 1 holds. Furthermore, Property 2 is fulfilled due
to the cooperation of the five rules. If exactly k rows have
been completely filled, then only the row k +1 can contain
non-empty cells. If there was a non-empty cell in a row
j > k + 1, it would find a “hole” in the row k + 1, which
exists as the row k +1 is the first uncompleted row. Then,
the hole would be occupied and the non-empty cell in the
row j would disappear. Moreover, Property 3 is fulfilled
as well. The final state of each non-empty cell is right tlb,
i.e., after a cell has touched the left boundary (or another
cell that has touched the left boundary), it moves to the
right as long as possible. In the end, k rows are completely
filled with right tlb cells, and all non-empty cells in the row
k + 1 are aligned at the right boundary. Then, the state
of all cells is fixed and the algorithm terminates with the
correct result.

References

[Aru04] J. J. Arulanandham. Introducing natu-
ral algorithms. http://www.cs.auckland.ac.nz
/∼cristian/umc/Introduction.zip, March 2004.

[Sch04] Dominik Schultes. A simulation of a liquid-based
natural algorithm for finding the average of n
integers using a cellular automaton. http://www-
user.rhrk.uni-kl.de/∼dschult/umc/asg3/, April
2004.

[Wol86] S. Wolfram. Theory and applications of cellular
automata. World Scientific, 1986.

A Test Run

The following test run demonstrates the behaviour of the
CA for a randomly chosen example with n = 30 and m =
10. The states of the cells are represented in the following
way: empty = whitespace, right = r, left = l, right tlb =
R, left trb = L.

2

0. r rr r
r r rr r
r rrr r rr r r
r rrr r rr r r r
r rrr r r r rrrr r r r
r rrr r rrr rrrrr r r r
rrrrr r rrrrrrrrr r r r r
rrrrr rrrrrrrrrrrr r r r r
rrrrrrrrrrrrrrrrrr r r r r rr
rrrrrrrrrrrrrrrrrrrr rrrrrrrrr

1. r r r r
rrr r r r r
rrr r r r rr r r
rrr r r r rrrr r r r
rrrr r rrrrrrrrr r r r r
rrrr r rrrrrrrrrr r r r r
rrrrrrrrrrrrrrrrr r r r r r
rrrrrrrrrrrrrrrrrrr r rrrrrrrL
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrL

2. r r r r r
r r r r rr r r
rrr r r r rrrrr r r r
rrr r rrrrrrrrrr r r r r
rrrrrrrrrrrrrrrr r r r r r
rrrrrrrrrrrrrrrrrr r r rr rrL
rrrrrrrrrrrrrrrrrrrrrrrrrrrrLL
rrrrrrrrrrrrrrrrrrrrrrrrrrrrLL

3. r r r rr r r
rr r rrr rrrrr r r r
rrrrrrrrrrrrrrr r r r r
rrrrrrrrrrrrrrrrr r r r rr
rrrrrrrrrrrrrrrrrrrrrrr rrrrLL
rrrrrrrrrrrrrrrrrrrrrrrrrrrLLL
rrrrrrrrrrrrrrrrrrrrrrrrrrrLLL

4. r
rrrrrrrrr rrrr r r r
rrrrrrrrrrrrrrrr r r rL
rrrrrrrrrrrrrrrrrrrr r rrrL
rrrrrrrrrrrrrrrrrrrrrr rrrrLLL
rrrrrrrrrrrrrrrrrrrrrrrrrrLLLL
rrrrrrrrrrrrrrrrrrrrrrrrrrLLLL

5. rrrrrrrr rrrrrr
rrrrrrrrrrrrrrrrr r r rLL
rrrrrrrrrrrrrrrrrrrrr rrLL
rrrrrrrrrrrrrrrrrrrrrrrrrrLLLL
rrrrrrrrrrrrrrrrrrrrrrrrrLLLLL
rrrrrrrrrrrrrrrrrrrrrrrrrLLLLL

10. rrr rrrrrr r r r
rrrrrrrrrrrrrrrr r r L L
rrrrrrrrrrrrrrrrrrrrrr rLLLLLL
rrrrrrrrrrrrrrrrrrrrrLLLLLLLLL
rrrrrrrrrrrrrrrrrrrrLLLLLLLLLL
rrrrrrrrrrrrrrrrrrrrLLLLLLLLLL

15. rrrr r r r r r
rrrrrrrrrrrrrrrrr r rLLL
rrrrrrrrrrrrrrrrrrrLLLLLLLLLLL
rrrrrrrrrrrrrrrrLLLLLLLLLLLLLL
rrrrrrrrrrrrrrrLLLLLLLLLLLLLLL
rrrrrrrrrrrrrrrLLLLLLLLLLLLLLL

20. r r r r r r r
rrrrrrrrrrrrrrrrLLLLLLLL
rrrrrrrrrrrrrrLLLLLLLLLLLLLLLL
rrrrrrrrrrrLLLLLLLLLLLLLLLLLLL
rrrrrrrrrrLLLLLLLLLLLLLLLLLLLL
rrrrrrrrrrLLLLLLLLLLLLLLLLLLLL

25. r r r r r r r
rrrrrrrrrrrLLLLLLLLLLLLL
rrrrrrrrrLLLLLLLLLLLLLLLLLLLLL
rrrrrrLLLLLLLLLLLLLLLLLLLLLLLL
rrrrrLLLLLLLLLLLLLLLLLLLLLLLLL
rrrrrLLLLLLLLLLLLLLLLLLLLLLLLL

30. r r r r r r
rrrrrrLLLLLLLLLLLLLLLLLL r
rrrrLLLLLLLLLLLLLLLLLLLLLLLLLL
rLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

35. r r r
rLLLLLLLLLLLLLLLLLLLLLLLr r rL
RLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
RRRRLLLLLLLLLLLLLLLLLLLLLLLLLL
RRRRRLLLLLLLLLLLLLLLLLLLLLLLLL
RRRRRLLLLLLLLLLLLLLLLLLLLLLLLL

40. r
RRRRLLLLLLLLLLLLLLLLLLLLLLLLLL
RRRRRRLLLLLLLLLLLLLLLLLLLLLLLL
RRRRRRRRRLLLLLLLLLLLLLLLLLLLLL
RRRRRRRRRRLLLLLLLLLLLLLLLLLLLL
RRRRRRRRRRLLLLLLLLLLLLLLLLLLLL

3

45. r
RRRRRRRRRLLLLLLLLLLLLLLLLLLLLL
RRRRRRRRRRRLLLLLLLLLLLLLLLLLLL
RRRRRRRRRRRRRRLLLLLLLLLLLLLLLL
RRRRRRRRRRRRRRRLLLLLLLLLLLLLLL
RRRRRRRRRRRRRRRLLLLLLLLLLLLLLL

50. L
RRRRRRRRRRRRRRLLLLLLLLLLLLLLLL
RRRRRRRRRRRRRRRRLLLLLLLLLLLLLL
RRRRRRRRRRRRRRRRRRRLLLLLLLLLLL
RRRRRRRRRRRRRRRRRRRRLLLLLLLLLL
RRRRRRRRRRRRRRRRRRRRLLLLLLLLLL

60. L
RRRRRRRRRRRRRRRRRRRRRRRRLLLLLL
RRRRRRRRRRRRRRRRRRRRRRRRRRLLLL
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRL
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

70. L
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

80. R
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

100. R
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

106. R
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

B Source Code

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ A Simulation of a Liquid-Based Natural Algorithm for

∗ Finding the Average of n Integers Using a Cellular

∗ Automaton

∗
∗ by Dominik Schultes

∗ 8. April 2004

∗
∗ Designed for Linux 2.4.19 and the g++ compiler 3.2.

∗ At least the method "clrscr" has to be adapted if

∗ Windows is used !

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <algorithm>

#include <iostream>

using namespace std;

/∗∗
Clears the screen. This method is platform-dependent !

It has to be adapted if Windows instead of Linux is used.

∗/
void clrscr() {

system("clear");

}

/∗∗
This class encapsulates the Cellular Automaton (CA)

that is used to determine the average of several

integers.

∗/
class AverageCA

{
private:

// The possible states of each cell

static const int OUT OF BOUNDS = 0;

static const int EMPTY = 1;

static const int RIGHT = 2;

static const int LEFT = 3;

static const int RIGHT TLB = 4;

static const int LEFT TRB = 5;

/∗∗
This class encapsulates the cells of the automaton.

∗/
class Cells {
public:

Cells() {}

/∗∗
Create a two-dimensional array of integers,

where each integer represents the state of

the corresponding cell.

∗/
Cells(int n, int m) : n(n), m(m) {

cells = new int[n ∗ m];

}

~Cells() {
delete[] cells;

}

/∗∗ Returns the state of the specified cell. ∗/
int getState(int x, int y) {

if ((x < 0) || (x >= n) || (y < 0) || (y >= m))

return OUT OF BOUNDS;

4

return cells[x∗ m + y];

}

/∗∗ Sets the state of the specified cell. ∗/
void setState(int x, int y, int newState) {

cells[x∗ m + y] = newState;

}

private:

int n; // the number of integers

int m; // the value of the biggest integer

// a two-dim. array that represents the cells

int∗ cells;

};

public:

/∗∗ Creates and initializes the Cellular Automaton. ∗/
AverageCA(int n, int input[])

: n(n), clocks(0), changed(0) {
// determine the maximum integer, compute the sum

// of all integers, and compute the desired value

// (the average of all integers) (in order to be

// able to check the result)

max = 0;

int sum = 0;

for (int i=0; i<n; i++) {
max = max(max, input[i]);

sum += input[i];

}
desiredValue = sum / (float)n;

// create the cells

cells = new Cells(n, max);

// initialize the states of the cells

for (int x=0; x<n; x++) {
for (int y=0; y<input[x]; y++)

setState(x,y,RIGHT);

for (int y=input[x]; y< max; y++)

setState(x,y,EMPTY);

}
}

~AverageCA() {
delete cells;

}

/∗∗
Returns true, iff no cells changed during the last

step.

∗/
bool isFinished() {

return (changed == 0);

}

/∗∗
Returns the average of all integers, which has been

computed with conventional means.

∗/
float getDesiredValue() {

return desiredValue;

}

/∗∗
Returns the average of all integers, which has been

computed by the Cellular Automaton.

∗/
float getActualValue() {

return getNoOfCompletedRows() +

(getNoOfNonEmptyCellsOnFirstUncompletedRow() /

(float)(n));

}

/∗∗ Print the current state of the CA. ∗/
void printCells() {

clrscr();

for (int y= max-1; y>=0; y--) {
for (int x=0; x< n; x++) {

switch(getState(x,y)) {
case EMPTY:

cout << " "; break;

case RIGHT:

cout << "r"; break;

case LEFT:

cout << "l"; break;

case RIGHT TLB:

cout << "R"; break;

case LEFT TRB:

cout << "L"; break;

}
}
cout << endl;

}
}

/∗∗ Print some statistics. ∗/
void printStatistics() {

cout << endl;

cout << "n = " << n << " ; max = " << max

<< " ; no of clocks = " << clocks << endl;

int sum = 0;

for (int y=0; y< max; y++) {
for (int x=0; x< n; x++)

if (getState(x,y) != EMPTY) sum++;

}

float average = sum / (float) n;

int noOfCompletedRows = getNoOfCompletedRows();

int itemsOnFirstUncompletedRow =

getNoOfNonEmptyCellsOnFirstUncompletedRow();

int itemsInFinalState = 0;

for (int y=0; y< max; y++) {
for (int x=0; x< n; x++)

if (getState(x,y) == RIGHT TLB) itemsInFinalState++;

}

cout << "sum = " << sum << " ; average = "

<< average << endl

<< "no of completed rows = "

<< noOfCompletedRows

<< " ; no of non-empty cells on the first "

<< "uncompleted row = k = "

<< itemsOnFirstUncompletedRow

<< " ; k / n = "

<< (itemsOnFirstUncompletedRow / (float) n)

<< endl

<< "percentage of cells in final state = "

<< (itemsInFinalState / (float)sum ∗ 100)

<< " % ; "

<< changed << " cells changed" << endl;

}

/∗∗ Execute one step. ∗/
void clock() {

clocks++;

// execute all substeps in the appropriate order

5

subClock1();

subClock2();

subClock3();

subClock4();

subClock5();

cleanUp();

}

private:

/∗∗ Returns the state of the specified cell. ∗/
int getState(int x, int y) {

return cells->getState(x,y);

}

/∗∗ Sets the state of the specified cell. ∗/
void setState(int x, int y, int newState) {

cells->setState(x,y,newState);

}

/∗∗ Substep according to Rule 1 (down). ∗/
void subClock1() {

Cells ∗cellsNew = new Cells(n, max);

for (int x=0; x< n; x++) {
for (int y=0; y< max; y++) {

cellsNew->setState(x,y,getState(x,y));

if (getState(x,y) == EMPTY) {
if (getState(x,y+1) > EMPTY)

cellsNew->setState(x,y,-RIGHT);

}
if (getState(x,y) > EMPTY) {

if (getState(x,y-1) == EMPTY)

cellsNew->setState(x,y,-EMPTY);

}
}

}
delete cells;

cells = cellsNew;

}

/∗∗ Substep according to Rule 2 (down-right). ∗/
void subClock2() {

Cells ∗cellsNew = new Cells(n, max);

for (int x=0; x< n; x++) {
for (int y=0; y< max; y++) {

cellsNew->setState(x,y,getState(x,y));

if (getState(x,y) == EMPTY) {
if (getState(x-1,y+1) > EMPTY)

cellsNew->setState(x,y,-RIGHT);

}
if (getState(x,y) > EMPTY) {

if (getState(x+1,y-1) == EMPTY)

cellsNew->setState(x,y,-EMPTY);

}
}

}
delete cells;

cells = cellsNew;

}

/∗∗ Substep according to Rule 3 (down-left). ∗/
void subClock3() {

Cells ∗cellsNew = new Cells(n, max);

for (int x=0; x< n; x++) {
for (int y=0; y< max; y++) {

cellsNew->setState(x,y,getState(x,y));

if (getState(x,y) == EMPTY) {
if (getState(x+1,y+1) > EMPTY)

cellsNew->setState(x,y,-RIGHT);

}
if (getState(x,y) > EMPTY) {

if (getState(x-1,y-1) == EMPTY)

cellsNew->setState(x,y,-EMPTY);

}
}

}
delete cells;

cells = cellsNew;

}

/∗∗ Substep according to Rule 4 (right). ∗/
void subClock4() {

Cells ∗cellsNew = new Cells(n, max);

for (int x=0; x< n; x++) {
for (int y=0; y< max; y++) {

int currentState = getState(x,y);

cellsNew->setState(x,y,currentState);

if (currentState == EMPTY) {
int leftState = getState(x-1,y);

if ((leftState == RIGHT) ||

(leftState == RIGHT TLB))

cellsNew->setState(x,y,-leftState);

}
int rightState = getState(x+1,y);

if (currentState == RIGHT) {
if (rightState >= EMPTY)

cellsNew->setState(x,y,-rightState);

else if (rightState == OUT OF BOUNDS)

cellsNew->setState(x,y,-LEFT TRB);

}
if (currentState == RIGHT TLB) {

if (rightState == EMPTY)

cellsNew->setState(x,y,-EMPTY);

}
}

}
delete cells;

cells = cellsNew;

}

/∗∗ Substep according to Rule 5 (left). ∗/
void subClock5() {

Cells ∗cellsNew = new Cells(n, max);

for (int x=0; x< n; x++) {
for (int y=0; y< max; y++) {

int currentState = getState(x,y);

cellsNew->setState(x,y,currentState);

if (currentState == EMPTY) {
int rightState = getState(x+1,y);

if ((rightState == LEFT) ||

(rightState == LEFT TRB))

cellsNew->setState(x,y,-rightState);

}
int leftState = getState(x-1,y);

if (currentState == LEFT) {
if (leftState >= EMPTY)

cellsNew->setState(x,y,-leftState);

else if (leftState == OUT OF BOUNDS)

cellsNew->setState(x,y,-RIGHT TLB);

}
if (currentState == LEFT TRB) {

if (leftState == EMPTY)

cellsNew->setState(x,y,-EMPTY);

else if ((leftState == OUT OF BOUNDS) ||

(leftState == RIGHT TLB))

cellsNew->setState(x,y,-RIGHT TLB);

else cellsNew->setState(x,y,-LEFT TRB);

}
}

}
delete cells;

cells = cellsNew;

}

6

/∗∗ Reset the markers. ∗/
void cleanUp() {

changed = 0;

for (int x=0; x< n; x++) {
for (int y=0; y< max; y++) {

if (getState(x,y) < 0) {
changed++;

setState(x,y,abs(getState(x,y)));

}
}

}
}

/∗∗ Returns the number of completely filled rows. ∗/
int getNoOfCompletedRows() {

int noOfCompletedRows = 0;

for (int y=0; y< max; y++) {
bool complete = true;

for (int x=0; x< n; x++)

if (getState(x,y) == EMPTY)

complete = false;

if (complete) noOfCompletedRows++;

else break;

}
return noOfCompletedRows;

}

/∗∗
Returns the number of non-empty cells on the first

uncompleted row.

∗/
int getNoOfNonEmptyCellsOnFirstUncompletedRow() {

int noOfCompletedRows = getNoOfCompletedRows();

int itemsOnFirstUncompletedRow = 0;

if (noOfCompletedRows < max) {
for (int x=0; x< n; x++)

if (getState(x,noOfCompletedRows) != EMPTY)

itemsOnFirstUncompletedRow++;

}
return itemsOnFirstUncompletedRow;

}

int n; // the number of integers

int max; // the maximum integer

int clocks; // the number of already executed steps

// the number of cells whose state has changed during

// the last step

int changed;

float desiredValue; // the average of all integers

Cells ∗ cells; // the cells of this automaton

};

/∗∗
Runs a randomly generated test case automatically and

checks the result.

∗/
void runAutomaticly() {

int n = 120; int m = 100;

int input[n];

for (int i=0; i<n; i++) {
input[i] = (int)(rand() /

(double)(RAND MAX+1.0) ∗ m);

}

AverageCA∗ ca = new AverageCA(n, input);

char ch;

//ca->printCells();

//ca->printStatistics();

//cin.get(ch);

do {
ca->clock();

//clrscr();

//ca->printStatistics();

} while (! ca->isFinished());

//ca->printCells();

//ca->printStatistics();

cout << "DESIRED VALUE = " << ca->getDesiredValue()

<< " ; ACTUAL VALUE = " << ca->getActualValue()

<< endl;

if (abs(ca->getDesiredValue() -

ca->getActualValue()) > 0.00001) {
cout << "ERROR !!!" << endl;

exit(-1);

}
else {

cout << "OKAY" << endl;

}
//cin.get(ch);

delete ca;

}

/∗∗
Runs a randomly generated test case.

After each step the user has to press RETURN.

∗/
void runManually(int n, int m) {

int input[n];

for (int i=0; i<n; i++) {
input[i] = (int)(rand() /

(double)(RAND MAX+1.0) ∗ m);

}

AverageCA∗ ca = new AverageCA(n, input);

char ch;

ca->printCells();

ca->printStatistics();

cout << "(Press RETURN to go on or enter \’’q\’’ and "

<< "press RETURN to quit.)" << endl;

cin.get(ch);

while(ch != ’q’) {
ca->clock();

ca->printCells();

ca->printStatistics();

cout << "(Press RETURN to go on or enter \’’q\’’ and "

<< "press RETURN to quit.)" << endl;

cin.get(ch);

}
delete ca;

}

/∗∗ The main method. ∗/
int main() {

// specify here the number of integers n

// and the maximum value of the integers m

int n = 30; int m = 11;

runManually(n,m);

return 0;

}

7

