Rainbow Sort

- Sorting at the Speed of Light -

Dominik Schultes

31. May 2004

1. Introduction: Complexity of Sorting

2. Rainbow Sort – Idea

3. Rainbow Sort – Implementation

Upper Bounds for Sorting

	Input	Processing	Output	Σ
Heapsort	n	$n \log n$	n	$\Theta(n \log n)$
Counting Sort	n	n+m	n	$\Theta(n+m)$
Bead Sort	n	\sqrt{n}	n	$\Theta(n)$

Note: Space Complexity of Bead Sort = $\Theta(n \cdot m)$

n = # items

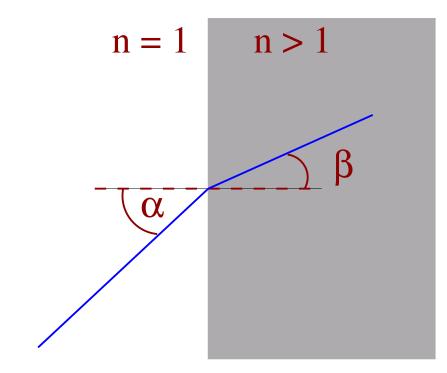
 $m = \max \max key value$

Lower Bounds for Sorting

• comparison-based sorting: $\Omega(n \log n)$

• in general, sorting: $\Omega(n)$

Basics: Refraction

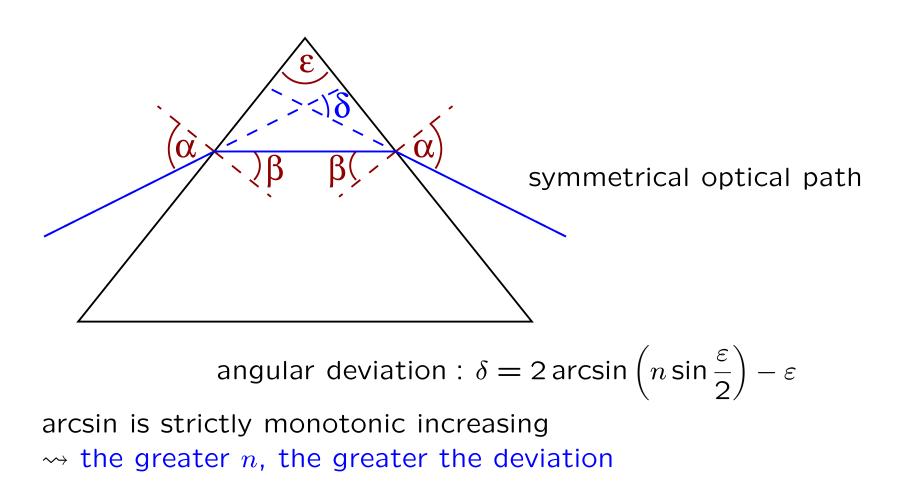


Snell's Law

$$\frac{\sin \alpha}{\sin \beta} = \frac{c}{c_n} = n$$

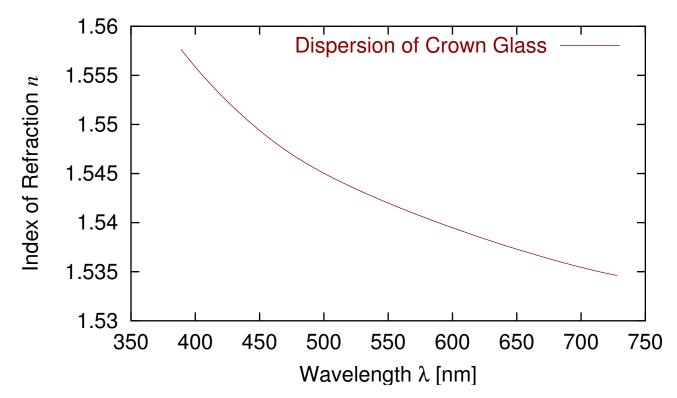
in this context: n = refraction index

Basics: Prism

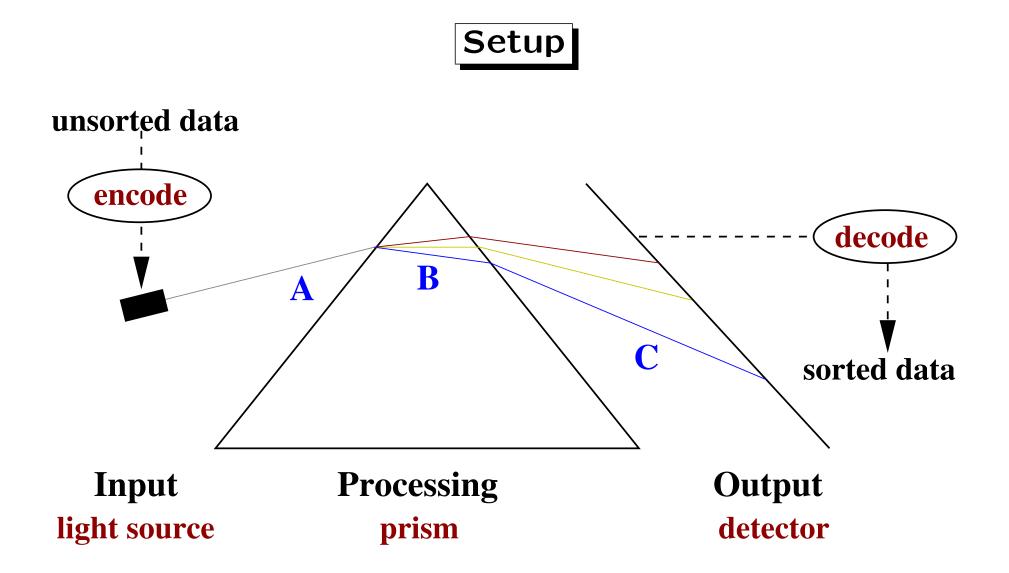


Basics: Dispersion

Refraction index depends on the wavelength of the ray



the less the wavelength λ , the greater n, the greater the deviation



Encoding / Decoding

Encoding: use s. m. increasing function $f : [0, m + 1] \rightarrow [\lambda_{min}, \lambda_{max}]$ Decoding: use f^{-1}

Encoding of Duplicates: use f(x + i/n) instead of f(x) where x = the number, i = position in the input

for the sake of simplicity: Assumption: no duplicates

Algorithm

Input Ray $ray := \emptyset$ for each $x \in Input$ do $ray := ray \cup f(x)$

Processing send *ray* through prism

Output Stack sorted := \emptyset Wavelength $cur\lambda$:= ∞ whenever min λ (incoming rays) < $cur\lambda$ do $cur\lambda$:= min λ (incoming rays) sorted.push($f^{-1}(cur\lambda)$) if sorted.size = n then return sorted

Simulator

Correctness

Let be $\lambda_{min} \leq \lambda_1 < \lambda_2 \leq \lambda_{max}$. Then λ_2 arrives before λ_1 .

Proof: $\lambda_1 < \lambda_2$

$$\rightsquigarrow n(\lambda_1) > n(\lambda_2)$$

 $\rightarrow \delta(\lambda_1) > \delta(\lambda_2) \quad (\rightarrow \text{ longer path for } \lambda_1)$ $\land c(\lambda_1) < c(\lambda_2) \quad (\rightarrow \lambda_1 \text{ slower in the prism})$

path / speed	λ_1	λ_2
A	equal / equal	equal / equal
В	longer / slower	shorter / faster
C	longer / equal	shorter / equal

Correctness (cont'd)

- \rightsquigarrow Wavelengths arrive in decreasing order.
- \rightsquigarrow Whenever a new wavelength arrives, it is smaller than $cur\lambda$.
- $\rightsquigarrow cur\lambda$ equals to all wavelengths one after the other in decr. order.
- \rightsquigarrow Output is complete (because coding function f is bijective)
- \wedge Output is sorted (because f^{-1} is s. m. increasing)

Complexity

Input	$\Omega(n)$	O(?)
Processing	$\Theta(1)$	
Output	$\Omega(n)$	O(?)
Space	$\Omega(n)$	<i>O</i> (?)

Heisenberg uncertainty principle

$$\Delta W \cdot \Delta t \geq \frac{h}{2\pi}$$

the more precise the measurement of the energy W ($\sim 1/\lambda$), the more time t is needed

Input: Laser

Use laser that can be tuned continuously over a range of wavelengths $[\lambda_{min}, \lambda_{max}]$.

Difficulty: precise setting

- if O(1) is sufficient, input $\in \Theta(n)$
- if we need to measure, input $\in \Theta(n+m)$

Output: Detector

most difficult part !

One possibility:

determine wavelength by measuring energy $\rightsquigarrow \operatorname{output} \in \Theta(n+m^2)$

Proof:

T = running time, $\ell =$ length of the path of λ_{min} ,

d = distance between λ_{min} and λ_{max} at the detector,

 Δd = distance between two adjacent wavelengths at the detector

(1)
$$T \sim \ell \sim d$$
 (2) $d = \Delta d \cdot m$ (3) $\Delta d \sim \Delta t \sim 1/\Delta W \sim m$

$$\rightsquigarrow T \sim \Delta d \cdot m \sim m \cdot m$$

Output: Detector (cont'd)

Another possibility:

determine wavelength by the point of contact of the incoming ray (the detector is subdivided into m cells)

 \rightsquigarrow measurement of the energy not required

 \rightsquigarrow output $\in \Theta(n+m)$

Proof:

(1)
$$T \sim \ell \sim d$$
 (2) $d = \Delta d \cdot m$ (3) $\Delta d = \text{const}$
 $\rightsquigarrow T \sim m$

Note: Space $\in \Theta(n+m)$

Conclusion

Input	$\Omega(n)$	O(n+m)
Processing	$\Theta(1)$	
Output	$\Omega(n)$	O(n+m)
Space	$\Omega(n)$	O(n+m)

- if measurement required: $\Theta(n+m)$
- otherwise: somewhere between $\Omega(n)$ and O(n+m)

in general: lower bound for sorting (time / space) ?