
Rainbow Sort

– Sorting at the Speed of Light –

Dominik Schultes

31. May 2004



1. Introduction: Complexity of Sorting

2. Rainbow Sort – Idea

3. Rainbow Sort – Implementation

1Rainbow Sort – Structure



Upper Bounds for Sorting

Input Processing Output Σ

Heapsort n n logn n Θ(n logn)

Counting Sort n n + m n Θ(n + m)

Bead Sort n
√

n n Θ(n)

Note: Space Complexity of Bead Sort = Θ(n ·m)

n = # items
m = maximum key value

2Rainbow Sort – Introduction



Lower Bounds for Sorting

• comparison-based sorting: Ω(n logn)

• in general, sorting: Ω(n)

3Rainbow Sort – Introduction



Basics: Refraction

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

n > 1n = 1

α
β

Snell’s Law

sinα

sinβ
=

c

cn
= n

in this context: n = refraction index

4Rainbow Sort – Idea



Basics: Prism

δ
ε

β
α α

β symmetrical optical path

angular deviation : δ = 2arcsin
(
n sin

ε

2

)
− ε

arcsin is strictly monotonic increasing
 the greater n, the greater the deviation

5Rainbow Sort – Idea



Basics: Dispersion

Refraction index depends on the wavelength of the ray

1.53

1.535

1.54

1.545

1.55

1.555

1.56

350 400 450 500 550 600 650 700 750

In
de

x 
of

 R
ef

ra
ct

io
n 

n

Wavelength λ [nm]

Dispersion of Crown Glass

the less the wavelength λ, the greater n, the greater the deviation

6Rainbow Sort – Idea



Setup

A B

C

Input
light source

Processing
prism detector

Output

� �
� �
� �

� �
� �
� �

unsorted data

encode

sorted data

decode

7Rainbow Sort – Idea



Encoding / Decoding

Encoding: use s. m. increasing function f : [0, m + 1] → [λmin, λmax]

Decoding: use f−1

Encoding of Duplicates: use f(x + i/n) instead of f(x)
where x = the number, i = position in the input

for the sake of simplicity:

Assumption: no duplicates

8Rainbow Sort – Idea



Algorithm

Input
Ray ray := ∅
for each x ∈ Input do ray := ray ∪ f(x)

Processing
send ray through prism

Output
Stack sorted := ∅
Wavelength curλ := ∞
whenever minλ(incoming rays) < curλ do

curλ := minλ(incoming rays)
sorted .push(f−1(curλ))
if sorted .size = n then return sorted

9Rainbow Sort – Idea



Simulator

10Rainbow Sort – Idea



Correctness

Let be λmin ≤ λ1 < λ2 ≤ λmax. Then λ2 arrives before λ1.

Proof: λ1 < λ2

 n(λ1) > n(λ2)

 δ(λ1) > δ(λ2) ( longer path for λ1)

∧ c(λ1) < c(λ2) ( λ1 slower in the prism)

path / speed λ1 λ2

A equal / equal equal / equal

B longer / slower shorter / faster

C longer / equal shorter / equal

11Rainbow Sort – Idea



Correctness (cont’d)

 Wavelengths arrive in decreasing order.

 Whenever a new wavelength arrives, it is smaller than curλ.

 curλ equals to all wavelengths one after the other in decr. order.

 Output is complete (because coding function f is bijective)

∧ Output is sorted (because f−1 is s. m. increasing)

12Rainbow Sort – Idea



Complexity

Input Ω(n) O(?)

Processing Θ(1)

Output Ω(n) O(?)

Space Ω(n) O(?)

13Rainbow Sort – Idea



Heisenberg uncertainty principle

∆W ·∆t ≥
h

2π

the more precise the measurement of the energy W (∼ 1/λ),

the more time t is needed

14Rainbow Sort – Implementation



Input: Laser

Use laser that can be tuned continuously over a range of wavelengths

[λmin, λmax].

Difficulty: precise setting

• if O(1) is sufficient, input ∈ Θ(n)

• if we need to measure, input ∈ Θ(n + m)

15Rainbow Sort – Implementation



Output: Detector

most difficult part !

One possibility:
determine wavelength by measuring energy
 output ∈ Θ(n + m2)

Proof:
T = running time, ` = length of the path of λmin,

d = distance between λmin and λmax at the detector,

∆d = distance between two adjacent wavelengths at the detector

(1) T ∼ ` ∼ d (2) d = ∆d ·m (3) ∆d ∼ ∆t ∼ 1/∆W ∼ m

 T ∼ ∆d ·m ∼ m ·m

16Rainbow Sort – Implementation



Output: Detector (cont’d)

Another possibility:
determine wavelength by the point of contact of the incoming ray
(the detector is subdivided into m cells)

 measurement of the energy not required

 output ∈ Θ(n + m)

Proof:

(1) T ∼ ` ∼ d (2) d = ∆d ·m (3) ∆d = const

 T ∼ m

Note: Space ∈ Θ(n + m)

17Rainbow Sort – Implementation



Conclusion

Input Ω(n) O(n + m)

Processing Θ(1)

Output Ω(n) O(n + m)

Space Ω(n) O(n + m)

• if measurement required: Θ(n + m)

• otherwise: somewhere between Ω(n) and O(n + m)

in general: lower bound for sorting (time / space) ?

18Rainbow Sort – Conclusion


