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Abstract

Concentrating on the algorithmic point of view, we summarize briefly two attempts of
solving NP-complete problems in polynomial time with an unconventional model of com-
putation:

e in [CPW™01] (described in [Bal01]), Chiu, Pezzoli, Wu, Stroock, and Whitesides solve

instances of the mazimal clique problem (MCP) using microfluidic networks, and

e in [Adl94] (described in [CPTO01]), Adleman solves an instance of the directed Hamilto-
nian path problem using DNA Computing.

We want to emphasize one common problem of these attempts that shows that we need not
only new models of computation, but also new algorithms in order to be able to solve big
instances of NP-complete problems.

In their experiments, Chiu et al. show how to solve an instance of the maximal clique problem®
in polynomial time. They obtain the speedup in comparison with a conventional implementation
on a conventional machine by taking advantage of the possibility of parallelizing the following
quite simple algorithm:

1. For each subset V' C V| set counter[V'] = 0.
2. For each edge (u,v) € E, for each subset V' with u,v € V', increment counter[V’].

3. For each subset V', check if counter[V’] = n'(n’ — 1)/2, where n’ = |V’|, i.e., check if there
are enough edges so that the vertex induced subgraph G’ = (V' E') is a clique.

4. Return the largest clique.

The actual implementation bases on microfluidic networks, which can be constructed in parallel.
In these networks the properties of fluids are used to search all potential solutions and pick out
all solutions in parallel. In order to be able to count for each subset V’ the number of edges in the
vertex induced subgraph G’ = (V' E’), each edge (u,v) leaves a tag at each subset it belongs to,
i.e., at each subset V'’ with u,v € V'. This “leaving of a tag” is done by a flow of a fluid from an
edge (represented by a reservoir) to each subgraph (represented by wells). The parallelism arises
due to the fact that the fluid splits on its way from an edge to all corresponding subgraphs at each
branching point and flows to all directions simultaneously.

In Adleman’s experiment, an instance of the directed Hamiltonian path problem? is solved.
The experiment bases on the following algorithm:

1. Generate random paths through the graph G = (V, E).
2. Keep only those paths that

e begin with the given source vertex s and end with the given target vertex ¢,
e have lengths n = |V, and

e contain all vertices of G at least once.

1The problem is the determination of a clique of maximal size in a graph G' = (V, E), where a clique is a subgraph
G’ = (V',E’) of G such that Yu,v € V' with u # v : (u,v) € E’, i.e., each pair of nodes is connected by an edge.
This problem is known to be NP-complete.

2For a given graph G = (V, E) and two given vertices s,t € V with s # t, the problem is the decision if there is
a path from s to t that contains each vertex of G exactly once. This problem is known to be NP-complete.

1



3. Return "Yes” if any paths remain, and ”No” otherwise.

Similar to the first example, the speedup is obtained by parallelizing this algorithm. In order
to do so, Adleman uses DNA computing by encoding vertices and edges in DNA in such a way
that a large amount of random paths is formed in parallel (step 1). The filtering process (step 2)
is done by operations on the DNA molecules, which are performed in parallel as well.

At first sight, both examples give the impression that we have now an efficient solution of big
instances of NP-complete problems as only polynomial time is needed. But, it is very important
to regard that the exponential complexity has not been eliminated, but it has only be shifted from
time to space. In the first example, there is for each subgraph a well in the microfluidic network.
There are 2" — n — 1 subgraphs that are considered (the n + 1 trivial subgraphs that contain
only one node or are empty are ignored). Hence, the number of wells growths exponentially with
the number of nodes n. In the second example, let us regard a complete graph as a worst case
instance. There are n! different simple paths of length n (and, of course, there are even more
paths if we count non-simple paths and paths of a length smaller than n as well). If we want to
use the given approach to compute a solution that is correct with a high probability, we have to
consider at least an appreciable portion of these paths. As every considered path is generated and
represented as DNA code, the required amount of DNA growths exponentially with the number
of nodes n.

Of course, in both cases the authors are aware of this fact and the goal of their work is to show
that such computations are possible on principle. For example, Adleman states “This experiment
demonstrates the feasibility of carrying out computations at the molecular level.” [Adl94] They
do not claim that they can easily use their approach to solve big instances of the same problem.

However, let us have a look on the final goal of these attempts: The final goal should be to
find solutions of big instances of NP-complete problems, i.e., we have to get rid off the exponential
complexity both in time and in space. At the moment, there is no real improvement in sight —
apart from perhaps better constants and a better energy efficiency, which Adleman mentions in
[Adl94]. The fact that we now can solve instances of NP-complete problems in polynomial time
seems to be an improvement, but we have already been able to do so without new models of
computations: For example, in order to solve the MCP, we “just” take 2" — n — 1 processors and
we assign one subgraph to each processor, which checks in polynomial time if the corresponding
subgraph is a clique. Then, we iterate through all possible sizes in decreasing order starting with
n. As soon as a processor represents a clique of the currently regarded size, it reports this clique
as the maximal one — and we are done. So, in a sense, this approach is quite similar to the
above mentioned experiments: We have a space-time tradeoff, but we have not eliminated the
exponential complexity.

In conclusion, we want to emphasize that the experiments by Chiu et al. and by Adleman
not only demonstrate that the presented new models of computation work on principle, but also
show that it is probably not sufficient to find new models of computation unless appropriate new
algorithms are found as well. In the regarded examples, the new models of computation were not
able to break through the limits of the “old” algorithms, namely the exponential growth (either
in time or in space).
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